Biomass Conversion Research Lab (BCRL), Department of Chemical Engineering and Materials Science, Michigan State University, MBI Building, 3900 Collins Road, Lansing, Michigan 48910, USA.
Biotechnol Biofuels. 2011 Feb 22;4:5. doi: 10.1186/1754-6834-4-5.
High enzyme loading is a major economic bottleneck for the commercial processing of pretreated lignocellulosic biomass to produce fermentable sugars. Optimizing the enzyme cocktail for specific types of pretreated biomass allows for a significant reduction in enzyme loading without sacrificing hydrolysis yield. This is especially important for alkaline pretreatments such as Ammonia fiber expansion (AFEX) pretreated corn stover. Hence, a diverse set of hemicellulases supplemented along with cellulases is necessary for high recovery of monosaccharides.
The core fungal cellulases in the optimal cocktail include cellobiohydrolase I [CBH I; glycoside hydrolase (GH) family 7A], cellobiohydrolase II (CBH II; GH family 6A), endoglucanase I (EG I; GH family 7B) and β-glucosidase (βG; GH family 3). Hemicellulases tested along with the core cellulases include xylanases (LX1, GH family 10; LX2, GH family 10; LX3, GH family 10; LX4, GH family 11; LX5, GH family 10; LX6, GH family 10), β-xylosidase (LβX; GH family 52), α-arabinofuranosidase (LArb, GH family 51) and α-glucuronidase (LαGl, GH family 67) that were cloned, expressed and/or purified from different bacterial sources. Different combinations of these enzymes were tested using a high-throughput microplate based 24 h hydrolysis assay. Both family 10 (LX3) and family 11 (LX4) xylanases were found to most efficiently hydrolyze AFEX pretreated corn stover in a synergistic manner. The optimal mass ratio of xylanases (LX3 and LX4) to cellulases (CBH I, CBH II and EG I) is 25:75. LβX (0.6 mg/g glucan) is crucial to obtaining monomeric xylose (54% xylose yield), while LArb (0.6 mg/g glucan) and LαGl (0.8 mg/g glucan) can both further increase xylose yield by an additional 20%. Compared with Accellerase 1000, a purified cocktail of cellulases supplemented with accessory hemicellulases will not only increase both glucose and xylose yields but will also decrease the total enzyme loading needed for equivalent yields.
A diverse set of accessory hemicellulases was found necessary to enhance the synergistic action of cellulases hydrolysing AFEX pretreated corn stover. High glucose (around 80%) and xylose (around 70%) yields were achieved with a moderate enzyme loading (~20 mg protein/g glucan) using an in-house developed cocktail compared to commercial enzymes.
高酶负荷是预处理木质纤维素生物质商业化加工生产可发酵糖的主要经济瓶颈。针对特定类型的预处理生物质优化酶制剂,可以在不牺牲水解产率的情况下,显著降低酶负荷。对于氨纤维膨胀(AFEX)预处理玉米秸秆等碱性预处理方法来说,这一点尤为重要。因此,需要补充各种半纤维素酶,再加上纤维素酶,才能实现单糖的高回收。
优化酶制剂中的核心真菌纤维素酶包括纤维二糖水解酶 I [CBH I;糖苷水解酶(GH)家族 7A]、纤维二糖水解酶 II(CBH II;GH 家族 6A)、内切葡聚糖酶 I(EG I;GH 家族 7B)和β-葡萄糖苷酶(βG;GH 家族 3)。与核心纤维素酶一起测试的半纤维素酶包括木聚糖酶(LX1、GH 家族 10;LX2、GH 家族 10;LX3、GH 家族 10;LX4、GH 家族 11;LX5、GH 家族 10;LX6、GH 家族 10)、β-木糖苷酶(LβX;GH 家族 52)、α-阿拉伯呋喃糖苷酶(LArb、GH 家族 51)和α-葡萄糖醛酸酶(LαGl、GH 家族 67),这些酶均来自不同的细菌来源,经过克隆、表达和/或纯化。使用基于高通量微孔板的 24 小时水解测定法对这些酶的不同组合进行了测试。发现第 10 家族(LX3)和第 11 家族(LX4)木聚糖酶协同作用可最有效地水解 AFEX 预处理玉米秸秆。木聚糖酶(LX3 和 LX4)与纤维素酶(CBH I、CBH II 和 EG I)的最佳质量比为 25:75。β-木糖苷酶(0.6 mg/g 葡聚糖)对于获得单糖木糖(54%木糖产率)至关重要,而α-阿拉伯呋喃糖苷酶(0.6 mg/g 葡聚糖)和α-葡萄糖醛酸酶(0.8 mg/g 葡聚糖)可以进一步将木糖产率提高 20%。与 Accellerase 1000 相比,补充了辅助半纤维素酶的纤维素酶的纯化混合物不仅可以提高葡萄糖和木糖的产率,还可以降低获得等效产率所需的总酶负荷。
发现需要补充各种辅助半纤维素酶,以增强纤维素酶水解 AFEX 预处理玉米秸秆的协同作用。与商业酶相比,使用内部开发的混合物在中等酶负荷(~20 mg 蛋白/g 葡聚糖)下可实现 80%左右的葡萄糖和 70%左右的木糖产率。