Department of Biomedical Engineering, Duke University, Durham, NC, USA.
IEEE Trans Ultrason Ferroelectr Freq Control. 2011 Feb;58(2):399-405. doi: 10.1109/TUFFC.2011.1817.
General purpose computing on graphics processing units (GPUs) has been previously shown to speed up computationally intensive data processing and image reconstruction algorithms for computed tomography (CT), magnetic resonance (MR), and ultrasound images. Although some algorithms in ultrasound have been converted to GPU processing, many investigative ultrasound research systems still use serial processing on a single CPU. One such ultrasound modality is acoustic radiation force impulse (ARFI) imaging, which investigates the mechanical properties of soft tissue. Traditionally, the raw data are processed offline to estimate the displacement of the tissue after the application of radiation force. It is highly advantageous to process the data in real-time to assess their quality and make modifications during a study. In this paper, we present algorithms for efficient GPU parallel processing of two widely used tools in ultrasound: cubic spline interpolation and Loupas' two-dimensional autocorrelator for displacement estimation. It is shown that a commercially available graphics card can be used for these computations, achieving speed increases up to 40x compared with single CPU processing. Thus, we conclude that the GPU-based data processing approach facilitates real-time (i.e., <1 second) display of ARFI data and is a promising approach for ultrasonic research systems.
图形处理单元(GPU)上的通用计算此前已被证明可以加速计算密集型数据处理和计算机断层扫描(CT)、磁共振(MR)和超声图像的图像重建算法。尽管一些超声算法已经转换为 GPU 处理,但许多研究性超声研究系统仍然使用单个 CPU 进行串行处理。一种这样的超声模态是声辐射力脉冲(ARFI)成像,它研究软组织的机械特性。传统上,原始数据是在离线处理以估计在施加辐射力之后组织的位移。实时处理数据以评估其质量并在研究期间进行修改具有很大的优势。在本文中,我们提出了用于超声中两种广泛使用的工具的高效 GPU 并行处理的算法:立方样条插值和用于位移估计的 Loupas 二维自相关器。结果表明,可以使用市售的图形卡进行这些计算,与单个 CPU 处理相比,速度提高了 40 倍。因此,我们得出结论,基于 GPU 的数据处理方法可以实现 ARFI 数据的实时(即<1 秒)显示,并且是超声研究系统的有前途的方法。