Suppr超能文献

快速多焦点区域 ARFI 成像分析

Analysis of rapid multi-focal-zone ARFI imaging.

作者信息

Rosenzweig Stephen, Palmeri Mark, Nightingale Kathryn

出版信息

IEEE Trans Ultrason Ferroelectr Freq Control. 2015 Feb;62(2):280-9. doi: 10.1109/TUFFC.2014.006594.

Abstract

Acoustic radiation force impulse (ARFI) imaging has shown promise for visualizing structure and pathology within multiple organs; however, because the contrast depends on the push beam excitation width, image quality suffers outside of the region of excitation. Multi-focal-zone ARFI imaging has previously been used to extend the region of excitation (ROE), but the increased acquisition duration and acoustic exposure have limited its utility. Supersonic shear wave imaging has previously demonstrated that through technological improvements in ultrasound scanners and power supplies, it is possible to rapidly push at multiple locations before tracking displacements, facilitating extended depth of field shear wave sources. Similarly, ARFI imaging can utilize these same radiation force excitations to achieve tight pushing beams with a large depth of field. Finite element method simulations and experimental data are presented, demonstrating that single- and rapid multi-focal-zone ARFI have comparable image quality (less than 20% loss in contrast), but the multi-focal-zone approach has an extended axial region of excitation. Additionally, as compared with single-push sequences, the rapid multi-focalzone acquisitions improve the contrast-to-noise ratio by up to 40% in an example 4-mm-diameter lesion.

摘要

声辐射力脉冲(ARFI)成像已显示出在可视化多个器官的结构和病理方面的前景;然而,由于对比度取决于推束激发宽度,在激发区域之外图像质量会下降。多焦点区域ARFI成像此前已被用于扩展激发区域(ROE),但采集持续时间的增加和声暴露限制了其效用。超声剪切波成像此前已证明,通过超声扫描仪和电源的技术改进,在跟踪位移之前可以在多个位置快速推束,从而实现更大深度的剪切波源。同样,ARFI成像可以利用这些相同的辐射力激发来实现具有大景深的紧密推束。本文给出了有限元方法模拟和实验数据,表明单焦点和快速多焦点区域ARFI具有可比的图像质量(对比度损失小于20%),但多焦点区域方法具有扩展的轴向激发区域。此外,与单次推束序列相比,在一个直径4毫米的病变示例中,快速多焦点区域采集可将对比度噪声比提高多达40%。

相似文献

1
Analysis of rapid multi-focal-zone ARFI imaging.
IEEE Trans Ultrason Ferroelectr Freq Control. 2015 Feb;62(2):280-9. doi: 10.1109/TUFFC.2014.006594.
2
Combined ARFI and Shear Wave Imaging of Prostate Cancer: Optimizing Beam Sequences and Parameter Reconstruction Approaches.
Ultrason Imaging. 2023 Jul;45(4):175-186. doi: 10.1177/01617346231171895. Epub 2023 May 2.
3
Harmonic tracking of acoustic radiation force-induced displacements.
IEEE Trans Ultrason Ferroelectr Freq Control. 2013 Nov;60(11):2347-58. doi: 10.1109/TUFFC.2013.6644738.
4
Modeling shear waves through a viscoelastic medium induced by acoustic radiation force.
Int J Numer Method Biomed Eng. 2012 Jun-Jul;28(6-7):678-96. doi: 10.1002/cnm.1488. Epub 2012 Jan 17.
5
Multi-source and multi-directional shear wave generation with intersecting steered ultrasound push beams.
IEEE Trans Ultrason Ferroelectr Freq Control. 2015 Apr;62(4):647-62. doi: 10.1109/TUFFC.2014.006805.
6
Image quality, tissue heating, and frame rate trade-offs in acoustic radiation force impulse imaging.
IEEE Trans Ultrason Ferroelectr Freq Control. 2009 Jan;56(1):63-76. doi: 10.1109/TUFFC.2009.1006.
7
Shear Wave Elasticity Imaging Using Nondiffractive Bessel Apodized Acoustic Radiation Force.
IEEE Trans Ultrason Ferroelectr Freq Control. 2021 Dec;68(12):3528-3539. doi: 10.1109/TUFFC.2021.3095614. Epub 2021 Nov 23.
9
The role of viscosity estimation for oil-in-gelatin phantom in shear wave based ultrasound elastography.
Ultrasound Med Biol. 2015 Feb;41(2):601-9. doi: 10.1016/j.ultrasmedbio.2014.09.028. Epub 2014 Dec 23.
10
Non-invasive Measurement of Dynamic Myocardial Stiffness Using Acoustic Radiation Force Impulse Imaging.
Ultrasound Med Biol. 2019 May;45(5):1112-1130. doi: 10.1016/j.ultrasmedbio.2018.12.011. Epub 2019 Mar 16.

引用本文的文献

2
Clinical Feasibility of 3-D Acoustic Radiation Force Impulse (ARFI) Imaging for Targeted Prostate Biopsy Guidance.
Ultrason Imaging. 2025 Mar;47(2):79-92. doi: 10.1177/01617346241311901. Epub 2025 Jan 6.
3
Combined ARFI and Shear Wave Imaging of Prostate Cancer: Optimizing Beam Sequences and Parameter Reconstruction Approaches.
Ultrason Imaging. 2023 Jul;45(4):175-186. doi: 10.1177/01617346231171895. Epub 2023 May 2.
4
Prostate Cancer Detection Using 3-D Shear Wave Elasticity Imaging.
Ultrasound Med Biol. 2021 Jul;47(7):1670-1680. doi: 10.1016/j.ultrasmedbio.2021.02.006. Epub 2021 Apr 6.
5
Deep Convolutional Neural Networks for Displacement Estimation in ARFI Imaging.
IEEE Trans Ultrason Ferroelectr Freq Control. 2021 Jul;68(7):2472-2481. doi: 10.1109/TUFFC.2021.3068377. Epub 2021 Jul 5.
7
Performance of acoustic radiation force impulse ultrasound imaging for carotid plaque characterization with histologic validation.
J Vasc Surg. 2017 Dec;66(6):1749-1757.e3. doi: 10.1016/j.jvs.2017.04.043. Epub 2017 Jul 13.
9
Identifying Clinically Significant Prostate Cancers using 3-D In Vivo Acoustic Radiation Force Impulse Imaging with Whole-Mount Histology Validation.
Ultrasound Med Biol. 2016 Jun;42(6):1251-62. doi: 10.1016/j.ultrasmedbio.2016.01.004. Epub 2016 Mar 3.
10
Robust Tracking of Small Displacements With a Bayesian Estimator.
IEEE Trans Ultrason Ferroelectr Freq Control. 2016 Jan;63(1):20-34. doi: 10.1109/TUFFC.2015.2495111. Epub 2015 Oct 27.

本文引用的文献

1
Harmonic tracking of acoustic radiation force-induced displacements.
IEEE Trans Ultrason Ferroelectr Freq Control. 2013 Nov;60(11):2347-58. doi: 10.1109/TUFFC.2013.6644738.
3
Acoustic radiation force impulse imaging of human prostates: initial in vivo demonstration.
Ultrasound Med Biol. 2012 Jan;38(1):50-61. doi: 10.1016/j.ultrasmedbio.2011.10.002. Epub 2011 Nov 21.
4
GPU-based real-time small displacement estimation with ultrasound.
IEEE Trans Ultrason Ferroelectr Freq Control. 2011 Feb;58(2):399-405. doi: 10.1109/TUFFC.2011.1817.
5
On the feasibility of imaging peripheral nerves using acoustic radiation force impulse imaging.
Ultrason Imaging. 2009 Jul;31(3):172-82. doi: 10.1177/016173460903100303.
6
Acoustic radiation force impulse imaging for noninvasive characterization of carotid artery atherosclerotic plaques: a feasibility study.
Ultrasound Med Biol. 2009 May;35(5):707-16. doi: 10.1016/j.ultrasmedbio.2008.11.001. Epub 2009 Feb 25.
7
Quantitative assessment of breast lesion viscoelasticity: initial clinical results using supersonic shear imaging.
Ultrasound Med Biol. 2008 Sep;34(9):1373-86. doi: 10.1016/j.ultrasmedbio.2008.02.002. Epub 2008 Apr 8.
8
Spatially invariant image sequences.
IEEE Trans Image Process. 1992;1(2):148-61. doi: 10.1109/83.136592.
9
Calculation of pressure fields from arbitrarily shaped, apodized, and excited ultrasound transducers.
IEEE Trans Ultrason Ferroelectr Freq Control. 1992;39(2):262-7. doi: 10.1109/58.139123.
10
In vivo visualization of abdominal malignancies with acoustic radiation force elastography.
Phys Med Biol. 2008 Jan 7;53(1):279-93. doi: 10.1088/0031-9155/53/1/020. Epub 2007 Dec 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验