Suppr超能文献

脑与脊髓相互作用:膳食姜黄素衍生物可改善颅脑损伤后的运动和认知功能障碍。

Brain and spinal cord interaction: a dietary curcumin derivative counteracts locomotor and cognitive deficits after brain trauma.

机构信息

University of California at Los Angeles, Los Angeles, CA, USA.

出版信息

Neurorehabil Neural Repair. 2011 May;25(4):332-42. doi: 10.1177/1545968310397706. Epub 2011 Feb 22.

Abstract

BACKGROUND

In addition to cognitive dysfunction, locomotor deficits are prevalent in traumatic brain injured (TBI) patients; however, it is unclear how a concussive injury can affect spinal cord centers. Moreover, there are no current efficient treatments that can counteract the broad pathology associated with TBI.

OBJECTIVE

The authors have investigated potential molecular basis for the disruptive effects of TBI on spinal cord and hippocampus and the neuroprotection of a curcumin derivative to reduce the effects of experimental TBI.

METHODS

The authors performed fluid percussion injury (FPI) and then rats were exposed to dietary supplementation of the curcumin derivative (CNB-001; 500 ppm). The curry spice curcumin has protective capacity in animal models of neurodegenerative diseases, and the curcumin derivative has enhanced brain absorption and biological activity.

RESULTS

The results show that FPI in rats, in addition to reducing learning ability, reduced locomotor performance. Behavioral deficits were accompanied by reductions in molecular systems important for synaptic plasticity underlying behavioral plasticity in the brain and spinal cord. The post-TBI dietary supplementation of the curcumin derivative normalized levels of BDNF, and its downstream effectors on synaptic plasticity (CREB, synapsin I) and neuronal signaling (CaMKII), as well as levels of oxidative stress-related molecules (SOD, Sir2).

CONCLUSIONS

These studies define a mechanism by which TBI can compromise centers related to cognitive processing and locomotion. The findings also show the influence of the curcumin derivative on synaptic plasticity events in the brain and spinal cord and emphasize the therapeutic potential of this noninvasive dietary intervention for TBI.

摘要

背景

除认知功能障碍外,外伤性脑损伤(TBI)患者还普遍存在运动功能障碍;然而, concussion 性损伤如何影响脊髓中枢尚不清楚。此外,目前尚无有效的治疗方法可以对抗与 TBI 相关的广泛病理。

目的

作者研究了 TBI 对脊髓和海马破坏性影响的潜在分子基础,以及姜黄素衍生物对减少实验性 TBI 影响的神经保护作用。

方法

作者进行了液压冲击伤(FPI),然后用姜黄素衍生物(CNB-001;500ppm)对大鼠进行饮食补充。姜黄香料姜黄素在神经退行性疾病的动物模型中具有保护作用,而姜黄素衍生物具有增强大脑吸收和生物活性的作用。

结果

结果表明,大鼠 FPI 除了降低学习能力外,还降低了运动表现。行为缺陷伴随着大脑和脊髓中与行为可塑性相关的突触可塑性的分子系统的减少。TBI 后姜黄素衍生物的饮食补充使 BDNF 及其下游效应物(CREB、突触素 I)和神经元信号(CaMKII)以及与氧化应激相关的分子(SOD、Sir2)的水平正常化。

结论

这些研究定义了 TBI 损害与认知处理和运动相关中心的机制。研究结果还表明了姜黄素衍生物对大脑和脊髓中突触可塑性事件的影响,并强调了这种非侵入性饮食干预对 TBI 的治疗潜力。

相似文献

1
Brain and spinal cord interaction: a dietary curcumin derivative counteracts locomotor and cognitive deficits after brain trauma.
Neurorehabil Neural Repair. 2011 May;25(4):332-42. doi: 10.1177/1545968310397706. Epub 2011 Feb 22.
2
Dietary curcumin counteracts the outcome of traumatic brain injury on oxidative stress, synaptic plasticity, and cognition.
Exp Neurol. 2006 Feb;197(2):309-17. doi: 10.1016/j.expneurol.2005.09.004. Epub 2005 Dec 20.
3
A pyrazole curcumin derivative restores membrane homeostasis disrupted after brain trauma.
Exp Neurol. 2010 Nov;226(1):191-9. doi: 10.1016/j.expneurol.2010.08.027. Epub 2010 Sep 15.
4
Vitamin E protects against oxidative damage and learning disability after mild traumatic brain injury in rats.
Neurorehabil Neural Repair. 2010 Mar-Apr;24(3):290-8. doi: 10.1177/1545968309348318. Epub 2009 Oct 19.
5
Dietary curcumin supplementation counteracts reduction in levels of molecules involved in energy homeostasis after brain trauma.
Neuroscience. 2009 Jul 21;161(4):1037-44. doi: 10.1016/j.neuroscience.2009.04.042. Epub 2009 Apr 21.
6
7
Dietary strategy to repair plasma membrane after brain trauma: implications for plasticity and cognition.
Neurorehabil Neural Repair. 2014 Jan;28(1):75-84. doi: 10.1177/1545968313498650. Epub 2013 Aug 1.
8
A pyrazole derivative of curcumin enhances memory.
Neurobiol Aging. 2010 Apr;31(4):706-9. doi: 10.1016/j.neurobiolaging.2008.05.020. Epub 2008 Jul 17.
9
Hydrogen-rich saline protects against oxidative damage and cognitive deficits after mild traumatic brain injury.
Brain Res Bull. 2012 Sep 1;88(6):560-5. doi: 10.1016/j.brainresbull.2012.06.006. Epub 2012 Jun 26.
10
Use of zinc as a treatment for traumatic brain injury in the rat: effects on cognitive and behavioral outcomes.
Neurorehabil Neural Repair. 2012 Sep;26(7):907-13. doi: 10.1177/1545968311435337. Epub 2012 Feb 13.

引用本文的文献

3
The Role of NRF2 in Trinucleotide Repeat Expansion Disorders.
Antioxidants (Basel). 2024 May 26;13(6):649. doi: 10.3390/antiox13060649.
5
Protective Effects of Plant-Derived Compounds Against Traumatic Brain Injury.
Mol Neurobiol. 2024 Oct;61(10):7732-7750. doi: 10.1007/s12035-024-04030-w. Epub 2024 Mar 1.
6
The neuroprotective potential of phytochemicals in traumatic brain injury: mechanistic insights and pharmacological implications.
Front Pharmacol. 2024 Jan 4;14:1330098. doi: 10.3389/fphar.2023.1330098. eCollection 2023.
7
Curcumin, inflammation, and neurological disorders: How are they linked?
Integr Med Res. 2023 Sep;12(3):100968. doi: 10.1016/j.imr.2023.100968. Epub 2023 Jun 25.
8
The Effects of Curcumin on Brain-Derived Neurotrophic Factor Expression in Neurodegenerative Disorders.
Curr Med Chem. 2024;31(36):5937-5952. doi: 10.2174/0929867330666230602145817.
9
Inflammaging, cellular senescence, and cognitive aging after traumatic brain injury.
Neurobiol Dis. 2023 May;180:106090. doi: 10.1016/j.nbd.2023.106090. Epub 2023 Mar 17.
10
Current and Potential Pharmacologic Therapies for Traumatic Brain Injury.
Pharmaceuticals (Basel). 2022 Jul 6;15(7):838. doi: 10.3390/ph15070838.

本文引用的文献

2
People preferentially increase hip joint power generation to walk faster following traumatic brain injury.
Neurorehabil Neural Repair. 2010 Jul-Aug;24(6):550-8. doi: 10.1177/1545968309357925. Epub 2010 Jan 19.
4
Exercise-induced improvement in cognitive performance after traumatic brain injury in rats is dependent on BDNF activation.
Brain Res. 2009 Sep 8;1288:105-15. doi: 10.1016/j.brainres.2009.06.045. Epub 2009 Jun 23.
5
Amyloid precursor protein secretases as therapeutic targets for traumatic brain injury.
Nat Med. 2009 Apr;15(4):377-9. doi: 10.1038/nm.1940. Epub 2009 Mar 15.
6
Systemic sepsis exacerbates mild post-traumatic brain injury in the rat.
J Neurotrauma. 2009 Sep;26(9):1547-56. doi: 10.1089/neu.2008.0723.
7
Plasticity of the attentional network after brain injury and cognitive rehabilitation.
Neurorehabil Neural Repair. 2009 Jun;23(5):468-77. doi: 10.1177/1545968308328728. Epub 2008 Dec 31.
8
BDNF-exercise interactions in the recovery of symmetrical stepping after a cervical hemisection in rats.
Neuroscience. 2008 Sep 9;155(4):1070-8. doi: 10.1016/j.neuroscience.2008.06.057. Epub 2008 Jul 3.
9
Docosahexaenoic acid dietary supplementation enhances the effects of exercise on synaptic plasticity and cognition.
Neuroscience. 2008 Aug 26;155(3):751-9. doi: 10.1016/j.neuroscience.2008.05.061. Epub 2008 Jun 17.
10
A broadly neuroprotective derivative of curcumin.
J Neurochem. 2008 May;105(4):1336-45. doi: 10.1111/j.1471-4159.2008.05236.x. Epub 2008 Jan 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验