Suppr超能文献

低频高幅振动对大鼠间充质基质细胞成骨分化的影响。

Effect of low-magnitude, high-frequency vibration on osteogenic differentiation of rat mesenchymal stromal cells.

机构信息

Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada.

出版信息

J Orthop Res. 2011 Jul;29(7):1075-80. doi: 10.1002/jor.21334. Epub 2011 Feb 22.

Abstract

Whole body vibration (WBV), consisting of a low-magnitude, high-frequency (LMHF) signal, is anabolic to bone in vivo and may act through alteration of the lineage commitment of mesenchymal stromal cells (MSC). We investigated the effect of LMHF vibration on rat bone marrow-derived MSCs (rMSCs) in an in vitro system. We subjected rMSCs to repeated (six) bouts of 1-h vibration at 0.3g and 60 Hz in the presence of osteogenic (OS) induction medium. The OS differentiation of rMSCs under the loaded and non-loaded conditions was assessed by examining cell proliferation, alkaline phosphatase (ALP) activity, mRNA expression of various osteoblast-associated markers [ALP, Runx2, osterix (Osx), collagen type I alpha 1 (COL1A1), bone sialoprotein (BSP), osteopontin (OPN), and osteocalcin (OCN)], and matrix mineralization. LMHF vibration did not enhance the OS differentiation of rMSCs. Surprisingly, the mRNA level of Osx, a transcription factor necessary for osteoblast formation, was decreased, and matrix mineralization was inhibited. Our findings suggest that LMHF vibration may exert its anabolic effects in vivo via mechanosensing of a cell type different from MSCs.

摘要

全身振动(WBV)由低幅度、高频(LMHF)信号组成,对体内骨骼具有合成代谢作用,可能通过改变间充质基质细胞(MSC)的谱系定向来发挥作用。我们在体外系统中研究了 LMHF 振动对大鼠骨髓来源的 MSC(rMSC)的影响。我们在存在成骨(OS)诱导培养基的情况下,对 rMSC 进行了六次 1 小时、0.3g 和 60Hz 的重复振动。通过检测细胞增殖、碱性磷酸酶(ALP)活性、各种成骨细胞相关标志物(ALP、Runx2、osterix(Osx)、胶原 I 型α1(COL1A1)、骨涎蛋白(BSP)、骨桥蛋白(OPN)和骨钙素(OCN)的 mRNA 表达)和基质矿化来评估 rMSC 在加载和未加载条件下的 OS 分化。LMHF 振动并未增强 rMSC 的 OS 分化。令人惊讶的是,成骨细胞形成所必需的转录因子 Osx 的 mRNA 水平降低,基质矿化受到抑制。我们的研究结果表明,LMHF 振动可能通过不同于 MSC 的细胞类型的机械感觉在体内发挥其合成代谢作用。

相似文献

1
Effect of low-magnitude, high-frequency vibration on osteogenic differentiation of rat mesenchymal stromal cells.
J Orthop Res. 2011 Jul;29(7):1075-80. doi: 10.1002/jor.21334. Epub 2011 Feb 22.
3
Effects of mechanical vibration on proliferation and osteogenic differentiation of human periodontal ligament stem cells.
Arch Oral Biol. 2012 Oct;57(10):1395-407. doi: 10.1016/j.archoralbio.2012.04.010. Epub 2012 May 15.
10
Impact of zinc fingers and homeoboxes 3 on the regulation of mesenchymal stem cell osteogenic differentiation.
Stem Cells Dev. 2011 Sep;20(9):1539-47. doi: 10.1089/scd.2010.0279. Epub 2011 Feb 24.

引用本文的文献

1
Mechanical loading regulates osteogenic differentiation and bone formation by modulating non-coding RNAs.
PeerJ. 2025 May 13;13:e19310. doi: 10.7717/peerj.19310. eCollection 2025.
2
Advances in mechanotransduction and sonobiology: effects of audible acoustic waves and low-vibration stimulations on mammalian cells.
Biophys Rev. 2024 Oct 7;16(6):783-812. doi: 10.1007/s12551-024-01242-1. eCollection 2024 Dec.
4
Sonomechanobiology: Vibrational stimulation of cells and its therapeutic implications.
Biophys Rev (Melville). 2023 Apr 21;4(2):021301. doi: 10.1063/5.0127122. eCollection 2023 Jun.
5
Biophysical Stimuli as the Fourth Pillar of Bone Tissue Engineering.
Front Cell Dev Biol. 2021 Nov 9;9:790050. doi: 10.3389/fcell.2021.790050. eCollection 2021.
7
Influence of Low-Magnitude High-Frequency Vibration on Bone Cells and Bone Regeneration.
Front Bioeng Biotechnol. 2020 Oct 21;8:595139. doi: 10.3389/fbioe.2020.595139. eCollection 2020.
8
Obesity-Induced Changes in Bone Marrow Homeostasis.
Front Endocrinol (Lausanne). 2020 May 12;11:294. doi: 10.3389/fendo.2020.00294. eCollection 2020.
9
Vibrational stress affects extracellular signal-regulated kinases activation and cytoskeleton structure in human keratinocytes.
PLoS One. 2020 Apr 8;15(4):e0231174. doi: 10.1371/journal.pone.0231174. eCollection 2020.
10
Recovery of stem cell proliferation by low intensity vibration under simulated microgravity requires LINC complex.
NPJ Microgravity. 2019 May 15;5:11. doi: 10.1038/s41526-019-0072-5. eCollection 2019.

本文引用的文献

1
Effect of low-magnitude, high-frequency vibration on osteocytes in the regulation of osteoclasts.
Bone. 2010 Jun;46(6):1508-15. doi: 10.1016/j.bone.2010.02.031. Epub 2010 Mar 6.
2
Pressure-loaded MSCs during early osteodifferentiation promote osteoclastogenesis by increase of RANKL/OPG ratio.
Ann Biomed Eng. 2009 Apr;37(4):794-802. doi: 10.1007/s10439-009-9638-9. Epub 2009 Jan 14.
4
BMP2 regulates Osterix through Msx2 and Runx2 during osteoblast differentiation.
J Biol Chem. 2008 Oct 24;283(43):29119-25. doi: 10.1074/jbc.M801774200. Epub 2008 Aug 14.
6
Osteocytes as mechanosensors in the inhibition of bone resorption due to mechanical loading.
Bone. 2008 Jan;42(1):172-9. doi: 10.1016/j.bone.2007.09.047. Epub 2007 Sep 26.
7
Adipogenesis is inhibited by brief, daily exposure to high-frequency, extremely low-magnitude mechanical signals.
Proc Natl Acad Sci U S A. 2007 Nov 6;104(45):17879-84. doi: 10.1073/pnas.0708467104. Epub 2007 Oct 24.
8
Osteocytes subjected to fluid flow inhibit osteoclast formation and bone resorption.
Bone. 2007 Nov;41(5):745-51. doi: 10.1016/j.bone.2007.07.019. Epub 2007 Aug 10.
9
Modeling the mechanical consequences of vibratory loading in the vertebral body: microscale effects.
Biomech Model Mechanobiol. 2008 Jun;7(3):191-202. doi: 10.1007/s10237-007-0085-y. Epub 2007 May 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验