W. M. Keck Center for Cellular Imaging (KCCI), Department of Biology, University of Virginia, Gilmer Hall (064), McCormick Rd., Charlottesville, VA 22904, USA.
Chemphyschem. 2011 Feb 25;12(3):462-74. doi: 10.1002/cphc.201000664. Epub 2010 Dec 29.
Theodor Förster would have been 100 years old this year, and he would have been astounded to see the impact of his scientific achievement, which is still evolving. Combining his quantitative approach of (Förster) resonance energy transfer (FRET) with state-of-the-art digital imaging techniques allows scientists to breach the resolution limits of light (ca. 200 nm) in light microscopy. The ability to deduce molecular or particle distances within a range of 1-10 nm in real time and to prove or disprove interactions between two or more components is of vital interest to researchers in many branches of science. While Förster's groundbreaking theory was published in the 1940s, the availability of suitable fluorophores, instruments, and analytical tools spawned numerous experiments in the last 20 years, as demonstrated by the exponential increase in publications. These cover basic investigation of cellular processes and the ability to investigate them when they go awry in pathological states, the dynamics involved in genetics, and following events in environmental sciences and methods in drug screening. This review covers the essentials of Theodor Förster's theory, describes the elements for successful implementation of FRET microscopy, the challenges and how to overcome them, and a leading-edge example of how Förster's scientific impact is still evolving in many directions. While this review cannot possibly do justice to the burgeoning field of FRET microscopy, a few interesting applications such as threecolor FRET, which greatly expands the opportunities for investigating interactions of cellular components compared with the traditional two-color method, are described, and an extensive list of references is provided for the interested reader to access.
特奥多尔·福斯特(Theodor Förster)今年将迎来他的 100 岁诞辰,如果他能看到自己的科学成就产生的影响,一定会感到震惊。他将定量的Förster 共振能量转移(FRET)方法与最先进的数字成像技术相结合,使科学家能够突破光(约 200nm)在光学显微镜下的分辨率极限。实时推断分子或粒子在 1-10nm 范围内的距离,并证明或否定两个或更多组件之间的相互作用的能力,对许多科学分支的研究人员都具有至关重要的意义。虽然福斯特的开创性理论发表于 20 世纪 40 年代,但合适的荧光染料、仪器和分析工具的可用性在过去 20 年中催生了无数实验,出版物的指数级增长就证明了这一点。这些涵盖了对细胞过程的基本研究,以及在病理状态下研究它们的能力、遗传学中涉及的动力学、环境科学中的事件以及药物筛选方法。这篇综述涵盖了特奥多尔·福斯特理论的要点,描述了成功实施 FRET 显微镜的要素、挑战以及如何克服这些挑战,以及福斯特的科学影响在许多方向上仍在不断发展的一个前沿示例。虽然这篇综述不可能公正地评价 FRET 显微镜这一新兴领域,但还是描述了一些有趣的应用,如三色 FRET,与传统的双色方法相比,它极大地扩展了研究细胞成分相互作用的机会,并为有兴趣的读者提供了广泛的参考文献列表。