Balatskaya Maria N, Baglay Alexandra I, Rubtsov Yury P, V Sharonov Georgy
Faculty of Medicine, Lomonosov Moscow State University, Lomonosovskiy av. 27-1, 119192 Moscow, Russia.
Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, str. Miklukho-Maklaya 16/10, 117997 Moscow, Russia.
Methods Protoc. 2020 Apr 27;3(2):33. doi: 10.3390/mps3020033.
The analysis of glycosylphosphatidylinositol (GPI)-anchored receptor distribution and dynamics in live cells is challenging, because their clusters exhibit subdiffraction-limited sizes and are highly dynamic. However, the cellular response depends on the GPI-anchored receptor clusters' distribution and dynamics. Here, we compare three approaches to GPI-anchored receptor labeling (with antibodies, fluorescent proteins, and enzymatically modified small peptide tags) and use several variants of Förster resonance energy transfer (FRET) detection by confocal microscopy and flow cytometry in order to obtain insight into the distribution and the ligand-induced dynamics of GPI-anchored receptors. We found that the enzyme-mediated site-specific fluorescence labeling of T-cadherin modified with a short peptide tag (12 residues in length) have several advantages over labeling by fluorescent proteins or antibodies, including (i) the minimized distortion of the protein's properties, (ii) the possibility to use a cell-impermeable fluorescent substrate that allows for selective labeling of surface-exposed proteins in live cells, and (iii) superior control of the donor to acceptor molar ratio. We successfully detected the FRET of GPI-anchored receptors, T-cadherin, and ephrin-A1, without ligands, and showed in real time that adiponectin induces stable T-cadherin cluster formation. In this paper (which is complementary to our recent research (Balatskaya et al., 2019)), we present the practical aspects of labeling and the heteroFRET measurements of GPI-anchored receptors to study their dynamics on a plasma membrane in live cells.
分析活细胞中糖基磷脂酰肌醇(GPI)锚定受体的分布和动力学具有挑战性,因为它们的簇表现出亚衍射极限尺寸且高度动态。然而,细胞反应取决于GPI锚定受体簇的分布和动力学。在这里,我们比较了三种GPI锚定受体标记方法(使用抗体、荧光蛋白和酶修饰的小肽标签),并通过共聚焦显微镜和流式细胞术使用了几种Förster共振能量转移(FRET)检测变体,以便深入了解GPI锚定受体的分布和配体诱导的动力学。我们发现,用短肽标签(长度为12个残基)修饰的T-钙黏蛋白的酶介导位点特异性荧光标记比荧光蛋白或抗体标记具有几个优点,包括(i)蛋白质性质的最小化扭曲,(ii)使用细胞不可渗透的荧光底物的可能性,该底物允许在活细胞中选择性标记表面暴露的蛋白质,以及(iii)对供体与受体摩尔比的更好控制。我们成功地检测到了无配体时GPI锚定受体、T-钙黏蛋白和ephrin-A1的FRET,并实时显示脂联素诱导稳定的T-钙黏蛋白簇形成。在本文中(这与我们最近的研究(Balatskaya等人,2019年)互补),我们介绍了标记的实际方面以及GPI锚定受体的异质FRET测量,以研究它们在活细胞质膜上的动力学。