Guengerich F P, Humphreys W G, Kim D H, Oida T, Cmarik J L
Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146.
Princess Takamatsu Symp. 1990;21:101-7.
The conjugation of the prototype dihaloalkane ethylene dibromide (EDB) with glutathione (GSH) yields S-(2-bromoethyl)GSH, which gives rise to S-[2-(N7-guanyl)ethyl]GSH as the major DNA adduct (greater than or equal to 95%). All reaction steps have SN2 character. Another minor DNA and RNA adduct is S-[2-(N1-adenyl)ethyl]GSH, formed in vitro and in vivo. These adducts have similar half-lives in vivo. Enhancement of GSH conjugation or inhibition of cytochrome P-450 IIE1 oxidation enhances DNA adduct levels in vivo and GSH depletion lowers levels. The mercapturic acid N-acetyl-S-[2-(N7-guanyl)ethyl]cysteine is excreted in urine and may find use as a biomarker. A series of compounds of the general structure RSCH2CH2Cl has been used to alkylate Salmonella typhimurium TA100. The ratio of (guanyl) base-pair mutations to N7-guanyl adducts varies dramatically, with S-(2-chloroethyl)GSH apparently producing the most potent guanyl adduct. This mutagenicity is not due to SOS response or alkylation specificity. Physical studies with modified oligonucleotides indicate that the N7-guanyl substitution weakens G-C pairing but does not in itself alter the selectivity of pairing to C in an isolated oligomer.
原型二卤代烷二溴乙烷(EDB)与谷胱甘肽(GSH)结合生成S-(2-溴乙基)GSH,进而产生S-[2-(N7-鸟嘌呤基)乙基]GSH作为主要的DNA加合物(大于或等于95%)。所有反应步骤均具有SN2特征。另一种次要的DNA和RNA加合物是S-[2-(N1-腺嘌呤基)乙基]GSH,在体外和体内均可形成。这些加合物在体内具有相似的半衰期。增强谷胱甘肽结合或抑制细胞色素P-450 IIE1氧化可提高体内DNA加合物水平,而谷胱甘肽耗竭则会降低水平。硫醚氨酸N-乙酰-S-[2-(N7-鸟嘌呤基)乙基]半胱氨酸经尿液排出,可用作生物标志物。一系列具有通式RSCH2CH2Cl的化合物已被用于使鼠伤寒沙门氏菌TA100烷基化。(鸟嘌呤基)碱基对突变与N7-鸟嘌呤基加合物的比例变化很大,S-(2-氯乙基)GSH显然产生最有效的鸟嘌呤基加合物。这种致突变性并非由于SOS反应或烷基化特异性。对修饰寡核苷酸的物理研究表明N7-鸟嘌呤基取代会削弱G-C配对,但本身不会改变在分离的寡聚物中与C配对的选择性。