Wang Samuel J, Kalpathy-Cramer Jayashree, Kim Jong Sung, Fuller C David, Thomas Charles R
Oregon Health & Science University, Portland, OR.
AMIA Annu Symp Proc. 2010 Nov 13;2010:847-51.
The Cox proportional hazards model is the most commonly used survival model in oncology; however, this semi-parametric model may not be the most appropriate survival model when the proportionality assumption does not hold. In this study, we consider the use of several types of accelerated failure time parametric survival techniques for modeling the benefit of adjuvant chemoradiotherapy for gallbladder cancer. In comparing the Weibull, exponential, log-logistic, and log-normal models, we found that the log-normal had the most favorable Akaike Information Criterion, and additional analyses of this model indicated that our gallbladder cancer dataset exhibited a good fit with the log-normal cumulative hazard function. This log-normal survival model can be used to help predict which patients will benefit from adjuvant chemoradiotherapy.
Cox比例风险模型是肿瘤学中最常用的生存模型;然而,当比例假设不成立时,这种半参数模型可能不是最合适的生存模型。在本研究中,我们考虑使用几种类型的加速失效时间参数生存技术来模拟辅助放化疗对胆囊癌的益处。在比较威布尔模型、指数模型、对数逻辑模型和对数正态模型时,我们发现对数正态模型具有最有利的赤池信息准则,对该模型的进一步分析表明,我们的胆囊癌数据集与对数正态累积风险函数拟合良好。这种对数正态生存模型可用于帮助预测哪些患者将从辅助放化疗中获益。