Rubin Daniel L, Mongkolwat Pattanasak, Channin David S
Department of Radiology, and.
Summit Transl Bioinform. 2009 Mar 1;2009:106-10.
Integrating and relating images with clinical and molecular data is a crucial activity in translational research, but challenging because the information in images is not explicit in standard computer-accessible formats. We have developed an ontology-based representation of the semantic contents of radiology images called AIM (Annotation and Image Markup). AIM specifies the quantitative and qualitative content that researchers extract from images. The AIM ontology enables semantic image annotation and markup, specifying the entities and relations necessary to describe images. AIM annotations, represented as instances in the ontology, enable key use cases for images in translational research such as disease status assessment, query, and inter-observer variation analysis. AIM will enable ontology-based query and mining of images, and integration of images with data in other ontology-annotated bioinformatics databases. Our ultimate goal is to enable researchers to link images with related scientific data so they can learn the biological and physiological significance of the image content.
将图像与临床和分子数据进行整合与关联是转化研究中的一项关键活动,但具有挑战性,因为图像中的信息并非以标准的计算机可访问格式呈现。我们开发了一种基于本体的放射学图像语义内容表示方法,称为AIM(注释与图像标记)。AIM规定了研究人员从图像中提取的定量和定性内容。AIM本体实现了语义图像注释和标记,规定了描述图像所需的实体和关系。作为本体中的实例表示的AIM注释,实现了转化研究中图像的关键用例,如疾病状态评估、查询和观察者间差异分析。AIM将实现基于本体的图像查询和挖掘,以及图像与其他本体注释的生物信息学数据库中的数据整合。我们的最终目标是使研究人员能够将图像与相关科学数据相链接,以便他们能够了解图像内容的生物学和生理学意义。