Suppr超能文献

计算人体图像标注。

Computing human image annotation.

作者信息

Channin David S, Mongkolwat Pattanasak, Kleper Vladimir, Rubin Daniel L

机构信息

Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA.

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2009;2009:7065-8. doi: 10.1109/IEMBS.2009.5333365.

Abstract

An image annotation is the explanatory or descriptive information about the pixel data of an image that is generated by a human (or machine) observer. An image markup is the graphical symbols placed over the image to depict an annotation. In the majority of current, clinical and research imaging practice, markup is captured in proprietary formats and annotations are referenced only in free text radiology reports. This makes these annotations difficult to query, retrieve and compute upon, hampering their integration into other data mining and analysis efforts. This paper describes the National Cancer Institute's Cancer Biomedical Informatics Grid's (caBIG) Annotation and Image Markup (AIM) project, focusing on how to use AIM to query for annotations. The AIM project delivers an information model for image annotation and markup. The model uses controlled terminologies for important concepts. All of the classes and attributes of the model have been harmonized with the other models and common data elements in use at the National Cancer Institute. The project also delivers XML schemata necessary to instantiate AIMs in XML as well as a software application for translating AIM XML into DICOM S/R and HL7 CDA. Large collections of AIM annotations can be built and then queried as Grid or Web services. Using the tools of the AIM project, image annotations and their markup can be captured and stored in human and machine readable formats. This enables the inclusion of human image observation and inference as part of larger data mining and analysis activities.

摘要

图像注释是由人类(或机器)观察者生成的关于图像像素数据的解释性或描述性信息。图像标记是放置在图像上以描绘注释的图形符号。在当前大多数临床和研究成像实践中,标记以专有格式捕获,注释仅在自由文本放射学报告中引用。这使得这些注释难以查询、检索和进行计算,阻碍了它们集成到其他数据挖掘和分析工作中。本文描述了美国国立癌症研究所的癌症生物医学信息网格(caBIG)的注释与图像标记(AIM)项目,重点关注如何使用AIM查询注释。AIM项目提供了一个用于图像注释和标记的信息模型。该模型对重要概念使用受控术语。模型的所有类和属性都已与美国国立癌症研究所正在使用的其他模型和通用数据元素进行了协调。该项目还提供了以XML实例化AIM所需的XML模式,以及一个用于将AIM XML转换为DICOM S/R和HL7 CDA的软件应用程序。可以构建大量的AIM注释集合,然后作为网格或Web服务进行查询。使用AIM项目的工具,图像注释及其标记可以以人类和机器可读的格式捕获和存储。这使得将人类图像观察和推理纳入更大的数据挖掘和分析活动成为可能。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验