Suppr超能文献

利用影像学、临床和基因组生物标志物预测胶质母细胞瘤患者的预后:重点关注肿瘤的非增强部分。

Outcome prediction in patients with glioblastoma by using imaging, clinical, and genomic biomarkers: focus on the nonenhancing component of the tumor.

机构信息

From the Division of Neuroradiology, Department of Radiology (R.J.), Bioinformatics Center, Department of Public Health Sciences (L.M.P.), and Department of Neurosurgery (R.J., L.S., T.M.), Henry Ford Health System, 2799 W Grand Blvd, Detroit, MI 48202; Department of Radiology, Emory University, Atlanta, Ga (D.G., C.A.H.); Department of Radiology, St Jude's Children's Research Hospital, Memphis, Tenn (S.N.H.); Department of Radiology, University of Virginia, Charlottesville, Va (M.W.); Department of Radiology, MD Anderson Cancer Center, Houston, Tex (A.R.); Department of Radiology, Brigham and Women's Hospital, Boston, Mass (R.R.C.); Clinical Research Directorate, CMRP, SAIC-Frederick, NCI-Frederick, Frederick, Md (J.K., J.F.); Department of Radiology, Boston University, Boston, Mass (C.C.J.); and Department of Radiology, Thomas Jefferson University Hospital, Philadelphia, Pa (A.F.).

出版信息

Radiology. 2014 Aug;272(2):484-93. doi: 10.1148/radiol.14131691. Epub 2014 Mar 19.

Abstract

PURPOSE

To correlate patient survival with morphologic imaging features and hemodynamic parameters obtained from the nonenhancing region (NER) of glioblastoma (GBM), along with clinical and genomic markers.

MATERIALS AND METHODS

An institutional review board waiver was obtained for this HIPAA-compliant retrospective study. Forty-five patients with GBM underwent baseline imaging with contrast material-enhanced magnetic resonance (MR) imaging and dynamic susceptibility contrast-enhanced T2*-weighted perfusion MR imaging. Molecular and clinical predictors of survival were obtained. Single and multivariable models of overall survival (OS) and progression-free survival (PFS) were explored with Kaplan-Meier estimates, Cox regression, and random survival forests.

RESULTS

Worsening OS (log-rank test, P = .0103) and PFS (log-rank test, P = .0223) were associated with increasing relative cerebral blood volume of NER (rCBVNER), which was higher with deep white matter involvement (t test, P = .0482) and poor NER margin definition (t test, P = .0147). NER crossing the midline was the only morphologic feature of NER associated with poor survival (log-rank test, P = .0125). Preoperative Karnofsky performance score (KPS) and resection extent (n = 30) were clinically significant OS predictors (log-rank test, P = .0176 and P = .0038, respectively). No genomic alterations were associated with survival, except patients with high rCBVNER and wild-type epidermal growth factor receptor (EGFR) mutation had significantly poor survival (log-rank test, P = .0306; area under the receiver operating characteristic curve = 0.62). Combining resection extent with rCBVNER marginally improved prognostic ability (permutation, P = .084). Random forest models of presurgical predictors indicated rCBVNER as the top predictor; also important were KPS, age at diagnosis, and NER crossing the midline. A multivariable model containing rCBVNER, age at diagnosis, and KPS can be used to group patients with more than 1 year of difference in observed median survival (0.49-1.79 years).

CONCLUSION

Patients with high rCBVNER and NER crossing the midline and those with high rCBVNER and wild-type EGFR mutation showed poor survival. In multivariable survival models, however, rCBVNER provided unique prognostic information that went above and beyond the assessment of all NER imaging features, as well as clinical and genomic features.

摘要

目的

通过对胶质母细胞瘤(GBM)非增强区(NER)的形态学成像特征和血流动力学参数与临床和基因组标志物进行相关性分析,评估患者的生存情况。

材料和方法

本 HIPAA 合规的回顾性研究获得了机构审查委员会的豁免。45 名 GBM 患者接受了基线造影增强磁共振成像(MR)和动态磁敏感对比增强 T2*-加权灌注 MR 成像检查。获得了与生存相关的分子和临床预测因子。采用 Kaplan-Meier 估计、Cox 回归和随机生存森林对总生存期(OS)和无进展生存期(PFS)的单变量和多变量模型进行了探索。

结果

OS 恶化(对数秩检验,P=.0103)和 PFS 恶化(对数秩检验,P=.0223)与 NER 相对脑血容量(rCBVNER)的增加相关,而 rCBVNER 与深部白质受累(t 检验,P=.0482)和 NER 边界定义不良(t 检验,P=.0147)有关。NER 穿过中线是与不良生存相关的唯一 NER 形态学特征(对数秩检验,P=.0125)。术前卡诺夫斯基表现评分(KPS)和切除程度(n=30)是 OS 的重要预测因素(对数秩检验,P=.0176 和 P=.0038)。除了 rCBVNER 较高和表皮生长因子受体(EGFR)野生型突变的患者生存明显较差(对数秩检验,P=.0306;受试者工作特征曲线下面积=0.62)外,没有其他基因组改变与生存相关。rCBVNER 边缘切除程度与预后能力的改善相关(置换检验,P=.084)。术前预测因子的随机森林模型表明 rCBVNER 是最重要的预测因子;KPS、诊断时年龄和 NER 穿过中线也很重要。包含 rCBVNER、诊断时年龄和 KPS 的多变量模型可用于对观察到的中位生存时间相差超过 1 年的患者进行分组(0.49-1.79 年)。

结论

rCBVNER 较高且 NER 穿过中线以及 rCBVNER 较高且 EGFR 野生型突变的患者生存情况较差。然而,在多变量生存模型中,rCBVNER 提供了独特的预后信息,超越了对所有 NER 成像特征以及临床和基因组特征的评估。

相似文献

引用本文的文献

9
Artificial intelligence in neuro-oncology.神经肿瘤学中的人工智能
Front Neurosci. 2023 Dec 14;17:1217629. doi: 10.3389/fnins.2023.1217629. eCollection 2023.

本文引用的文献

5
Imaging biomarkers of brain tumour margin and tumour invasion.脑肿瘤边界和肿瘤侵袭的影像学生物标志物。
Br J Radiol. 2011 Dec;84 Spec No 2(Spec Iss 2):S159-67. doi: 10.1259/bjr/26838774.
8
An extent of resection threshold for newly diagnosed glioblastomas.新诊断的胶质母细胞瘤的切除范围阈值。
J Neurosurg. 2011 Jul;115(1):3-8. doi: 10.3171/2011.2.jns10998. Epub 2011 Mar 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验