Laboratory for Chemical Physics, New York University, New York, New York 10010, USA.
Protein Sci. 2011 Apr;20(4):724-34. doi: 10.1002/pro.603.
Amelogenins are an intrinsically disordered protein family that plays a major role in the development of tooth enamel, one of the most highly mineralized materials in nature. Monomeric porcine amelogenin possesses random coil and residual secondary structures, but it is not known which sequence regions would be conformationally attractive to potential enamel matrix targets such as other amelogenins (self-assembly), other matrix proteins, cell surfaces, or biominerals. To address this further, we investigated recombinant porcine amelogenin (rP172) using "solvent engineering" techniques to simultaneously promote native-like structure and induce amelogenin oligomerization in a manner that allows identification of intermolecular contacts between amelogenin molecules. We discovered that in the presence of 2,2,2-trifluoroethanol (TFE) significant folding transitions and stabilization occurred primarily within the N- and C-termini, while the polyproline Type II central domain was largely resistant to conformational transitions. Seven Pro residues (P2, P127, P130, P139, P154, P157, P162) exhibited conformational response to TFE, and this indicates these Pro residues act as folding enhancers in rP172. The remaining Pro residues resisted TFE perturbations and thus act as conformational stabilizers. We also noted that TFE induced rP172 self-association via the formation of intermolecular contacts involving P4-H6, V19-P33, and E40-T58 regions of the N-terminus. Collectively, these results confirm that the N- and C-termini of amelogenin are conformationally responsive and represent potential interactive sites for amelogenin-target interactions during enamel matrix mineralization. Conversely, the Pro, Gln central domain is resistant to folding and this may have important functional significance for amelogenin.
釉原蛋白是一种无序蛋白家族,在牙齿釉质的发育中起着重要作用,牙齿釉质是自然界中矿化程度最高的物质之一。单体猪釉原蛋白具有无规卷曲和残余二级结构,但尚不清楚哪些序列区域对潜在的釉基质靶标(如其他釉原蛋白(自组装)、其他基质蛋白、细胞表面或生物矿物)具有构象吸引力。为了进一步解决这个问题,我们使用“溶剂工程”技术研究重组猪釉原蛋白(rP172),以同时促进天然样结构的形成,并以允许鉴定釉原蛋白分子之间的分子间接触的方式诱导釉原蛋白寡聚化。我们发现,在 2,2,2-三氟乙醇(TFE)的存在下,主要在 N-和 C-末端发生显著的折叠转变和稳定化,而多脯氨酸 II 型中心域在很大程度上抵抗构象转变。七个脯氨酸残基(P2、P127、P130、P139、P154、P157、P162)对 TFE 表现出构象响应,这表明这些脯氨酸残基在 rP172 中作为折叠增强剂发挥作用。其余脯氨酸残基抵抗 TFE 的干扰,因此作为构象稳定剂发挥作用。我们还注意到,TFE 通过形成涉及 N-末端的 P4-H6、V19-P33 和 E40-T58 区域的分子间接触诱导 rP172 自组装。总的来说,这些结果证实釉原蛋白的 N-和 C-末端具有构象响应性,代表釉基质矿化过程中釉原蛋白-靶标相互作用的潜在相互作用位点。相反,脯氨酸、谷氨酰胺中心域对折叠具有抗性,这对釉原蛋白可能具有重要的功能意义。