Department of Preventative and Restorative Dental Sciences, School of Dentistry, University of California, San Francisco, CA, USA.
J Dent Res. 2021 Dec;100(13):1434-1443. doi: 10.1177/00220345211012925. Epub 2021 May 19.
The nanofibrous nature and its intricate structural organization are the basis for the extraordinary ability of sound enamel to outlive masticatory forces at minimal failure rates. Apatite nanofibers of several hundreds of micrometers to possibly millimeters in length originate during the secretory stage of amelogenesis as 2-nm-thin and 15-nm-wide ribbons that develop and grow in length under the guidance of a dynamic mixture of specialized proteins, the developing enamel matrix (DEM). A critical role in the unidirectional and oriented growth of enamel mineral ribbons has been attributed to amelogenin, the major constituent of the DEM. This review elaborates on recent studies on the ability of ribbon-like assemblies of amelogenin to template the formation of an amorphous calcium phosphate precursor that transforms into apatite mineral ribbons similar to the ones observed in developing enamel. A mechanistic model of the biological processes that drive biomineralization in enamel is presented in the context of a comparative analysis of enamel mouse models and earlier structural data of the DEM emphasizing a regulatory role of the matrix metalloproteinase 20 in mineral deposition and the involvement of a process-directing agent for the templated mineral growth directed by amelogenin nanoribbons.
纳米纤维的性质及其复杂的结构组织是釉质具有非凡的抗咀嚼力的基础,其失效概率极小。牙釉质分泌阶段会产生数百微米到几毫米长的磷灰石纳米纤维,这些纤维最初是 2nm 厚、15nm 宽的薄带,在一组特殊蛋白质(釉基质)的动态混合物的引导下发育和生长。釉原蛋白是釉基质的主要成分,在釉质矿化带的单向和定向生长中起着关键作用。本文详细阐述了最近关于釉原蛋白带状组装体模板形成无定形磷酸钙前体的能力的研究,该前体转化为类似于在发育中的釉质中观察到的磷灰石矿化带。在对釉质小鼠模型和早期釉基质结构数据的比较分析的背景下,提出了一个生物矿化过程的机制模型,强调了基质金属蛋白酶 20 在矿化沉积中的调节作用,以及在釉原蛋白纳米带引导的模板化矿化生长中涉及的导向剂的作用。