LMIS4, EPFL, 1015 Lausanne, Switzerland.
Anal Chem. 2011 Mar 15;83(6):2234-42. doi: 10.1021/ac103118r. Epub 2011 Feb 25.
We provide a common theoretical framework reuniting specific models for the Ca(2+)-alginate system and general reaction diffusion theory along with experimental validation on a microfluidic chip. As a starting point, we use a set of nonlinear, partial differential equations that are traditionally solved numerically: the Mikkelsen-Elgsaeter model. Applying the traveling-wave hypothesis as a major simplification, we obtain an analytical solution. The solution indicates that the fundamental properties of the alginate reaction front are governed by a single dimensionless parameter λ. For small λ values, a large depletion zone accompanies the reaction front. For large λ values, the alginate reacts before having the time to diffuse significantly. We show that the λ parameter is of general importance beyond the alginate model system, as it can be used to classify known solutions for second-order reaction diffusion schemes, along with the novel solution presented here. For experimental validation, we develop a microchip model system, in which the alginate gel formation can be carried out in a highly controlled, essentially 1D environment. The use of a filter barrier enables us to rapidly renew the CaCl(2) solution, while maintaining flow speeds lower than 1 μm/s for the alginate compartment. This allows one to impose an exactly known bulk CaCl(2) concentration and diffusion resistance. This experimental model system, taken together with the theoretical development, enables the determination of the entire set of physicochemical parameters governing the alginate reaction front in a single experiment.
我们提供了一个通用的理论框架,将 Ca(2+)-海藻酸钠体系的具体模型与一般的反应扩散理论结合起来,并在微流控芯片上进行了实验验证。作为一个起点,我们使用了一组传统上通过数值求解的非线性偏微分方程:Mikkelsen-Elgsaeter 模型。应用行波假设作为主要简化,我们得到了一个解析解。该解表明,海藻酸钠反应前沿的基本特性由一个单一的无量纲参数 λ 决定。对于小的 λ 值,反应前沿伴随着一个大的耗尽区。对于大的 λ 值,海藻酸钠在有时间显著扩散之前就发生了反应。我们表明,λ 参数在海藻酸钠模型系统之外具有普遍的重要性,因为它可以用于对二阶反应扩散方案的已知解进行分类,以及这里提出的新解。为了进行实验验证,我们开发了一个微芯片模型系统,其中可以在高度可控的、本质上是一维的环境中进行海藻酸钠凝胶的形成。使用过滤屏障可以使我们快速更新 CaCl(2)溶液,同时将海藻酸钠隔室的流速保持在 1 μm/s 以下。这使得人们可以施加一个确切已知的 CaCl(2) 总体浓度和扩散阻力。这个实验模型系统,结合理论发展,可以在单个实验中确定控制海藻酸钠反应前沿的整个物理化学参数集。