Theoretical Biology & Biophysics, MS K710, Los Alamos National Laboratory, Los Alamos, NM 87545, USA.
Epidemics. 2009 Dec;1(4):230-9. doi: 10.1016/j.epidem.2009.10.003. Epub 2009 Nov 12.
Large-sequence datasets provide an opportunity to investigate the dynamics of pathogen epidemics. Thus, a fast method to estimate the evolutionary rate from large and numerous phylogenetic trees becomes necessary. Based on minimizing tip height variances, we optimize the root in a given phylogenetic tree to estimate the most homogenous evolutionary rate between samples from at least two different time points. Simulations showed that the method had no bias in the estimation of evolutionary rates and that it was robust to tree rooting and topological errors. We show that the evolutionary rates of HIV-1 subtype B and C epidemics have changed over time, with the rate of evolution inversely correlated to the rate of virus spread. For subtype B, the evolutionary rate slowed down and tracked the start of the HAART era in 1996. Subtype C in Ethiopia showed an increase in the evolutionary rate when the prevalence increase markedly slowed down in 1995. Thus, we show that the evolutionary rate of HIV-1 on the population level dynamically tracks epidemic events.
大型序列数据集为研究病原体流行病的动态提供了机会。因此,需要一种快速的方法从大量的系统发育树中估计进化率。基于最小化尖端高度方差,我们优化给定系统发育树中的根,以估计来自至少两个不同时间点的样本之间最同质的进化率。模拟表明,该方法在进化率的估计中没有偏差,并且对树的根和拓扑错误具有鲁棒性。我们表明,HIV-1 亚型 B 和 C 流行病的进化率随时间发生了变化,进化速度与病毒传播速度成反比。对于亚型 B,当 1996 年开始使用高效抗逆转录病毒治疗(HAART)时,进化速度减慢并跟踪。在 1995 年埃塞俄比亚流行率显著下降时,C 型在埃塞俄比亚的进化率增加。因此,我们表明 HIV-1 在人群水平上的进化率动态跟踪流行病事件。