Bianco Carolina L, Schneider Craig S, Santonicola Mariagabriella, Lenhoff Abraham M, Kaler Eric W
Department of Chemical Engineering, University of Delaware, Newark, DE 19716.
Ind Eng Chem Res. 2010 Sep 29;50(1):85-96. doi: 10.1021/ie101011v.
Membrane proteins are made soluble in aqueous buffers by the addition of various surfactants (detergents) to form so-called protein-detergent complexes (PDCs). Properties of membrane proteins are commonly assessed by unfolding the protein in the presence of surfactant in a buffer solution by adding urea. The stability of the protein under these conditions is then monitored by biophysical methods such as fluorescence or circular dichroism spectroscopy. Often overlooked in these experiments is the effect of urea on the phase behavior and micellar microstructure of the different surfactants used to form the PDCs. Here the effect of urea on five polyoxyethylene surfactants - n-octylytetraoxyethylene (C(8)E(4)), n-octylpentaoxyethylene (C(8)E(5)), n-decylhexaoxyethylene (C(10)E(6)), n-dodecylhexaoxyethylene (C(12)E(6)) and n-dodecyloctaoxylethylene (C(12)E(8)) - is explored. The presence of urea increases the critical micelle concentration (CMC) of all surfactants studied, indicating that the concentration of both the surfactant and urea should be considered in membrane protein folding studies. The cloud point temperature of all surfactants studied also increases with increasing urea concentration. Small-angle neutron scattering shows a urea-induced transition from an elongated to a globular shape for micelles of C(8)E(4) and C(12)E(6). In contrast, C(8)E(5) and C(12)E(8) form more globular micelles at room temperature and the micelles remain globular as the urea concentration is increased. The effects of increasing urea concentration on micelle structure are analogous to those of decreasing the temperature. The large changes in micelle structure observed here could also affect membrane protein unfolding studies by changing the structure of the PDC.
通过添加各种表面活性剂(去污剂),膜蛋白可在水性缓冲液中溶解,形成所谓的蛋白质 - 去污剂复合物(PDC)。膜蛋白的性质通常通过在缓冲溶液中加入尿素,使蛋白质在表面活性剂存在下展开来评估。然后通过荧光或圆二色光谱等生物物理方法监测蛋白质在这些条件下的稳定性。在这些实验中,常常被忽视的是尿素对用于形成PDC的不同表面活性剂的相行为和胶束微观结构的影响。本文探讨了尿素对五种聚氧乙烯表面活性剂——正辛基四氧乙烯(C(8)E(4))、正辛基五氧乙烯(C(8)E(5))、正癸基六氧乙烯(C(10)E(6))、正十二烷基六氧乙烯(C(12)E(6))和正十二烷基八氧乙烯(C(12)E(8))——的影响。尿素的存在会增加所有研究的表面活性剂的临界胶束浓度(CMC),这表明在膜蛋白折叠研究中应同时考虑表面活性剂和尿素的浓度。所有研究的表面活性剂的浊点温度也随着尿素浓度的增加而升高。小角中子散射表明,尿素会使C(8)E(4)和C(12)E(6)的胶束从细长形状转变为球状。相比之下,C(8)E(5)和C(12)E(8)在室温下形成更球状的胶束,并且随着尿素浓度的增加,胶束仍保持球状。尿素浓度增加对胶束结构的影响类似于温度降低的影响。此处观察到的胶束结构的巨大变化也可能通过改变PDC的结构来影响膜蛋白展开研究。