Department of Orthopaedics, Affiliated No. 6 People's Hospital of Shanghai Jiao Tong University, Shanghai 200233, China.
Chin Med J (Engl). 2011 Jan;124(2):273-9.
Previous studies have demonstrated increased functions of osteoblasts on nanophase materials compared to conventional ceramics or composites. Nanophase materials are unique materials that simulate dimensions of constituent components of bone as they possess particle or grain sizes less than 100 nm. However, to date, interactions of osteoblasts on nanophase materials compared to conventional metals remain to be elucidated. The objective of the present in vitro study was to synthesize nanophase metals (Ti6Al4V), characterize, and evaluate osteoblast functions on Ti6Al4V. Such metals in conventional form are widely used in orthopedic applications.
In this work, nanophase Ti6Al4V surfaces were processed by the severe plastic deformation (SPD) principle and used to investigate osteoblast long-term functions. Primary cultured osteoblasts from neonatal rat calvaria were cultured on both nanophase and conventional Ti6Al4V substrates. Cell proliferation, total protein content, and alkaline phosphatase (ALP) activity were evaluated after 1, 3, 7, 10 and 14 days. Calcium deposition, gene expression of type I collagen (Col-I), osteocalcin (OC), osteopontin (OP) and the production of insulin-like growth factor-I (IGF-I) and transforming growth factor-beta 1 (TGF-β1) were also investigated after 14 days of culture.
Functions of osteoblasts including proliferation, synthesis of protein, and ALP activity were improved on the nanophase compared to the conventional Ti6Al4V. The expression of Col-I, OC and OP mRNA was also increased on nanophase Ti6Al4V after 14 days of culture. Calcium deposition was the same; the average number of the calcified nodules on the two Ti6Al4V surfaces was similar after 14 days of culture; however, highly significant size calcified nodules on the nanophase Ti6Al4V was observed. Of the growth factors examined, only TGF-β1 showed a difference in production on the nanophase surface.
Nanophase Ti6Al4V surfaces improve proliferation, differentiation and mineralization of osteoblast cells and should be further considered for orthopedic implant applications.
先前的研究表明,与传统陶瓷或复合材料相比,纳米相材料对成骨细胞的功能有增强作用。纳米相材料是一种独特的材料,其模拟了骨的组成成分的尺寸,因为它们具有小于 100nm 的颗粒或晶粒尺寸。然而,迄今为止,与传统金属相比,成骨细胞在纳米相材料上的相互作用仍有待阐明。本体外研究的目的是合成纳米相金属(Ti6Al4V),对其进行表征,并评估 Ti6Al4V 上成骨细胞的功能。这种金属以传统形式广泛应用于矫形应用。
在这项工作中,纳米相 Ti6Al4V 表面通过强烈塑性变形(SPD)原理进行处理,并用于研究成骨细胞的长期功能。原代培养的新生大鼠颅骨成骨细胞在纳米相和传统 Ti6Al4V 基底上培养。在 1、3、7、10 和 14 天后,评估细胞增殖、总蛋白含量和碱性磷酸酶(ALP)活性。在培养 14 天后,还研究了钙沉积、I 型胶原(Col-I)、骨钙素(OC)、骨桥蛋白(OP)的基因表达以及胰岛素样生长因子-I(IGF-I)和转化生长因子-β1(TGF-β1)的产生。
与传统 Ti6Al4V 相比,成骨细胞的功能包括增殖、蛋白质合成和 ALP 活性在纳米相上得到了改善。培养 14 天后,纳米相 Ti6Al4V 上 Col-I、OC 和 OP mRNA 的表达也增加了。钙沉积相同;培养 14 天后,两种 Ti6Al4V 表面上钙化结节的平均数量相似;然而,在纳米相 Ti6Al4V 上观察到了高度显著的大钙化结节。在所检查的生长因子中,只有 TGF-β1 在纳米相表面的产生存在差异。
纳米相 Ti6Al4V 表面可提高成骨细胞的增殖、分化和矿化作用,应进一步考虑用于矫形植入物的应用。