文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

(R)-N-(苯并咪唑-2-基)-1,2,3,4-四氢-1-萘胺(NS8593)通过负门控调制取决于内孔前庭中的残基:K(Ca)2 通道深孔门控的药理学证据。

Negative gating modulation by (R)-N-(benzimidazol-2-yl)-1,2,3,4-tetrahydro-1-naphthylamine (NS8593) depends on residues in the inner pore vestibule: pharmacological evidence of deep-pore gating of K(Ca)2 channels.

机构信息

Department of Pharmacology, University of California, Davis, CA 95616, USA.

出版信息

Mol Pharmacol. 2011 Jun;79(6):899-909. doi: 10.1124/mol.110.069807. Epub 2011 Mar 1.


DOI:10.1124/mol.110.069807
PMID:21363929
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC3102549/
Abstract

Acting as a negative gating modulator, (R)-N-(benzimidazol-2-yl)-1,2,3,4-tetrahydro-1-naphthylamine (NS8593) shifts the apparent Ca(2+)-dependence of the small-conductance Ca(2+)-activated K(+) channels K(Ca)2.1-2.3 to higher Ca(2+) concentrations. Similar to the positive K(Ca) channel-gating modulators 1-ethyl-2-benzimidazolinone (1-EBIO) and cyclohexyl-[2-(3,5-dimethyl-pyrazol-1-yl)-6-methylpyrimidin-4-yl]-amine (CyPPA), the binding site for NS8593 has been assumed to be located in the C-terminal region, in which these channels interact with their Ca(2+) sensor calmodulin. However, by using a progressive chimeric approach, we were able to localize the site-of-action of NS8593 to the K(Ca)2 pore. For example, when we transferred the C terminus from the NS8593-insensitive intermediate-conductance K(Ca)3.1 channel to K(Ca)2.3, the chimeric channel remained as sensitive to NS8593 as wild-type K(Ca)2.3. In contrast, when we transferred the K(Ca)2.3 pore to K(Ca)3.1, the channel became sensitive to NS8593. Using site-directed mutagenesis, we subsequently identified two specific residues in the inner vestibule of K(Ca)2.3 (Ser507 and Ala532) that determined the effect of NS8593. Mutation of these residues to the corresponding residues in K(Ca)3.1 (Thr250 and Val275) made K(Ca)2.3 insensitive to NS8593, whereas introduction of serine and alanine into K(Ca)3.1 was sufficient to render this channel highly sensitive to NS8593. It is noteworthy that the same two residue positions have been found previously to mediate sensitivity of K(Ca)3.1 to clotrimazole and 1-[(2-chlorophenyl)diphenylmethyl]-1H-pyrazole (TRAM-34). The location of Ser507 in the pore-loop near the selectivity filter and Ala532 in an adjacent position in S6 are within the region predicted to contain the K(Ca)2 channel gate. Hence, we propose that NS8593-mediated gating modulation occurs via interaction with gating structures at a position deep within the inner pore vestibule.

摘要

作为一种负门控调制剂,(R)-N-(苯并咪唑-2-基)-1,2,3,4-四氢-1-萘基胺(NS8593)将小电导钙激活钾(K(Ca))通道 K(Ca)2.1-2.3 的表观 Ca(2+)依赖性转移到更高的 Ca(2+)浓度。类似于正 K(Ca) 通道门控调节剂 1-乙基-2-苯并咪唑啉酮(1-EBIO)和环己基-[2-(3,5-二甲基吡唑-1-基)-6-甲基嘧啶-4-基]-胺(CyPPA),NS8593 的结合位点被假定位于 C 端区域,在该区域中,这些通道与它们的 Ca(2+)传感器钙调蛋白相互作用。然而,通过使用渐进嵌合方法,我们能够将 NS8593 的作用部位定位到 K(Ca)2 孔。例如,当我们将来自 NS8593 不敏感的中间电导 K(Ca)3.1 通道的 C 末端转移到 K(Ca)2.3 时,嵌合通道对 NS8593 的敏感性与野生型 K(Ca)2.3 相同。相比之下,当我们将 K(Ca)2.3 孔转移到 K(Ca)3.1 时,通道对 NS8593 变得敏感。通过定点突变,我们随后确定了 K(Ca)2.3 内孔前庭中的两个特定残基(Ser507 和 Ala532),它们决定了 NS8593 的作用。将这些残基突变为 K(Ca)3.1 中的相应残基(Thr250 和 Val275)使 K(Ca)2.3 对 NS8593 不敏感,而将丝氨酸和丙氨酸引入 K(Ca)3.1 足以使该通道对 NS8593 高度敏感。值得注意的是,先前已经发现相同的两个残基位置介导了 K(Ca)3.1 对克霉唑和 1-[(2-氯苯基)二苯基甲基]-1H-吡唑(TRAM-34)的敏感性。Ser507 在靠近选择性过滤器的孔环中的位置和 Ala532 在 S6 中的相邻位置都位于预测包含 K(Ca)2 通道门的区域内。因此,我们提出 NS8593 介导的门控调节是通过与内孔前庭深处的门控结构相互作用发生的。

相似文献

[1]
Negative gating modulation by (R)-N-(benzimidazol-2-yl)-1,2,3,4-tetrahydro-1-naphthylamine (NS8593) depends on residues in the inner pore vestibule: pharmacological evidence of deep-pore gating of K(Ca)2 channels.

Mol Pharmacol. 2011-3-1

[2]
Inhibitory gating modulation of small conductance Ca2+-activated K+ channels by the synthetic compound (R)-N-(benzimidazol-2-yl)-1,2,3,4-tetrahydro-1-naphtylamine (NS8593) reduces afterhyperpolarizing current in hippocampal CA1 neurons.

Mol Pharmacol. 2006-11

[3]
Selective activation of the SK1 subtype of human small-conductance Ca2+-activated K+ channels by 4-(2-methoxyphenylcarbamoyloxymethyl)-piperidine-1-carboxylic acid tert-butyl ester (GW542573X) is dependent on serine 293 in the S5 segment.

Mol Pharmacol. 2009-9

[4]
Natural and synthetic modulators of SK (K(ca)2) potassium channels inhibit magnesium-dependent activity of the kinase-coupled cation channel TRPM7.

Br J Pharmacol. 2012-6

[5]
Localization of the activation gate for small conductance Ca2+-activated K+ channels.

J Neurosci. 2002-8-1

[6]
Evidence for a deep pore activation gate in small conductance Ca2+-activated K+ channels.

J Gen Physiol. 2007-12

[7]
Pharmacological modulation of the gating properties of small conductance Ca2+-activated K+ channels alters the firing pattern of dopamine neurons in vivo.

J Neurophysiol. 2010-7-21

[8]
Synthesis and structure-activity relationship studies of 2-(N-substituted)-aminobenzimidazoles as potent negative gating modulators ofsmall conductance Ca2+-activated K+ channels.

J Med Chem. 2008-12-11

[9]
6,7-Dichloro-1H-indole-2,3-dione-3-oxime functions as a superagonist for the intermediate-conductance Ca-activated K channel K3.1.

Mol Pharmacol. 2025-3

[10]
Selective positive modulation of the SK3 and SK2 subtypes of small conductance Ca2+-activated K+ channels.

Br J Pharmacol. 2007-7

引用本文的文献

[1]
Cryo-EM structures of the small-conductance Ca-activated K2.2 channel.

Nat Commun. 2025-4-17

[2]
K 2.2 (KCNN2): A physiologically and therapeutically important potassium channel.

J Neurosci Res. 2023-11

[3]
Gating kinetics and pharmacological properties of small-conductance Ca-activated potassium channels.

Biophys J. 2023-4-4

[4]
K-Related Neurological Disorders: Phenotypic Spectrum and Therapeutic Indications.

Curr Neuropharmacol. 2023

[5]
Relevance of Abnormal KCNN1 Expression and Osmotic Hypersensitivity in Ewing Sarcoma.

Cancers (Basel). 2022-10-1

[6]
Inhibition of Small-Conductance Calcium-Activated Potassium Current ( ) Leads to Differential Atrial Electrophysiological Effects in a Horse Model of Persistent Atrial Fibrillation.

Front Physiol. 2021-2-9

[7]
Effects of calcium-activated potassium channel modulators on afterhyperpolarizing potentials in identified motor and mechanosensory neurons of the medicinal leech.

J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2021-1

[8]
Identification of the Functional Binding Site for the Convulsant Tetramethylenedisulfotetramine in the Pore of the GABA Receptor.

Mol Pharmacol. 2021-1

[9]
Hypo-Osmotic Loading Induces Expression of IL-6 in Nucleus Pulposus Cells of the Intervertebral Disc Independent of TRPV4 and TRPM7.

Front Pharmacol. 2020-7-1

[10]
Pharmacology of Small- and Intermediate-Conductance Calcium-Activated Potassium Channels.

Annu Rev Pharmacol Toxicol. 2019-7-23

本文引用的文献

[1]
Allosteric block of KCa2 channels by apamin.

J Biol Chem. 2010-6-18

[2]
Small conductance calcium-activated potassium channels: from structure to function.

Prog Neurobiol. 2010-3-30

[3]
EF hands at the N-lobe of calmodulin are required for both SK channel gating and stable SK-calmodulin interaction.

J Gen Physiol. 2009-9-14

[4]
The KCNQ2/3 selective channel opener ICA-27243 binds to a novel voltage-sensor domain site.

Neurosci Lett. 2009-9-3

[5]
Selective activation of the SK1 subtype of human small-conductance Ca2+-activated K+ channels by 4-(2-methoxyphenylcarbamoyloxymethyl)-piperidine-1-carboxylic acid tert-butyl ester (GW542573X) is dependent on serine 293 in the S5 segment.

Mol Pharmacol. 2009-9

[6]
Tuning the excitability of midbrain dopamine neurons by modulating the Ca2+ sensitivity of SK channels.

Eur J Neurosci. 2009-5

[7]
Synthesis and structure-activity relationship studies of 2-(N-substituted)-aminobenzimidazoles as potent negative gating modulators ofsmall conductance Ca2+-activated K+ channels.

J Med Chem. 2008-12-11

[8]
Hydrophobic interactions as key determinants to the KCa3.1 channel closed configuration. An analysis of KCa3.1 mutants constitutively active in zero Ca2+.

J Biol Chem. 2009-1-2

[9]
Naphtho[1,2-d]thiazol-2-ylamine (SKA-31), a new activator of KCa2 and KCa3.1 potassium channels, potentiates the endothelium-derived hyperpolarizing factor response and lowers blood pressure.

Mol Pharmacol. 2009-2

[10]
Preliminary SAR studies on non-apamin-displacing 4-(aminomethylaryl)pyrrazolopyrimidine K(Ca) channel blockers.

Bioorg Med Chem Lett. 2008-10-15

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索