Suppr超能文献

Flexibility in the solution structure of human tropoelastin.

作者信息

Muiznieks Lisa D, Weiss Anthony S

机构信息

School of Molecular and Microbial Biosciences, The University of Sydney, Sydney, Australia 2006.

出版信息

Biochemistry. 2007 Jul 10;46(27):8196-205. doi: 10.1021/bi700139k. Epub 2007 Jun 14.

Abstract

We investigated the flexibility of full-length tropoelastin in solution by using far- and near-ultraviolet circular dichroism (UV CD) and fluorescence spectroscopy to probe for structural flexibility and residue mobility within secondary and tertiary features of the monomer. Fluorescence spectroscopy revealed the presence of exposed hydrophobicity through the binding of the hydrophobic probe 4,4'-dianilino-1,1'-binaphthyl-5,5'-disulfonate (bis-ANS), which demonstrates that hydrophobic regions form clusters and are not confined to a molecular core. Near-UV CD indicated substantial mobility of aromatic residues. Structural prediction programs (PONDR, DisEMBL, and Globplot version 2.0) estimated 75 +/- 2% disorder in the tertiary structure of tropoelastin on the basis of primary sequence information. A single-site substitution of Trp for Gln (Q513W) at the tropoelastin domain 25-26 interface facilitated fluorescence spectroscopy for revealing that this region is exposed to solvent. Polarization anisotropy demonstrated substantial flexibility of W513 and little change upon denaturation of the monomer with guanidine hydrochloride. Comparable movement was found for native sequence aromatic residues in the presence of glycosaminoglycans and trifluoroethanol. These data prove the intrinsic flexibility of specific residues and adjacent sequences in any native conformation(s) they may take. This study is the first characterization of the level of mobility in defined regions of the full-length tropoelastin monomer and provides direct evidence for regions of flexible structure in tropoelastin.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验