Suppr超能文献

漏电积分发放神经元的超快全光实现

Ultrafast all-optical implementation of a leaky integrate-and-fire neuron.

作者信息

Kravtsov Konstantin S, Fok Mable P, Prucnal Paul R, Rosenbluth David

机构信息

Department of Electrical Engineering, Princeton University, Princeton, NJ 08544, USA.

出版信息

Opt Express. 2011 Jan 31;19(3):2133-47. doi: 10.1364/OE.19.002133.

Abstract

In this paper, we demonstrate for the first time an ultrafast fully functional photonic spiking neuron. Our experimental setup constitutes a complete all-optical implementation of a leaky integrate-and-fire neuron, a computational primitive that provides a basis for general purpose analog optical computation. Unlike purely analog computational models, spiking operation eliminates noise accumulation and results in robust and efficient processing. Operating at gigahertz speed, which corresponds to at least 108 speed-up compared with biological neurons, the demonstrated neuron provides all functionality required by the spiking neuron model. The two demonstrated prototypes and a demonstrated feedback operation mode prove the feasibility and stability of our approach and show the obtained performance characteristics.

摘要

在本文中,我们首次展示了一种超快全功能光子脉冲神经元。我们的实验装置构成了一个完整的全光实现的泄漏积分发放神经元,这是一种计算原语,为通用模拟光学计算提供了基础。与纯模拟计算模型不同,脉冲操作消除了噪声积累,并实现了强大而高效的处理。所展示的神经元以千兆赫兹速度运行,与生物神经元相比,速度至少提高了108倍,它具备脉冲神经元模型所需的所有功能。所展示的两个原型以及一种展示的反馈操作模式证明了我们方法的可行性和稳定性,并展示了所获得的性能特征。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验