Shastri Bhavin J, Nahmias Mitchell A, Tait Alexander N, Rodriguez Alejandro W, Wu Ben, Prucnal Paul R
Department of Electrical Engineering, Princeton University, Princeton, New Jersey 08544, USA.
Sci Rep. 2016 Jan 12;6:19126. doi: 10.1038/srep19126.
Novel materials and devices in photonics have the potential to revolutionize optical information processing, beyond conventional binary-logic approaches. Laser systems offer a rich repertoire of useful dynamical behaviors, including the excitable dynamics also found in the time-resolved "spiking" of neurons. Spiking reconciles the expressiveness and efficiency of analog processing with the robustness and scalability of digital processing. We demonstrate a unified platform for spike processing with a graphene-coupled laser system. We show that this platform can simultaneously exhibit logic-level restoration, cascadability and input-output isolation--fundamental challenges in optical information processing. We also implement low-level spike-processing tasks that are critical for higher level processing: temporal pattern detection and stable recurrent memory. We study these properties in the context of a fiber laser system and also propose and simulate an analogous integrated device. The addition of graphene leads to a number of advantages which stem from its unique properties, including high absorption and fast carrier relaxation. These could lead to significant speed and efficiency improvements in unconventional laser processing devices, and ongoing research on graphene microfabrication promises compatibility with integrated laser platforms.
光子学中的新型材料和器件有潜力彻底改变光学信息处理方式,超越传统的二进制逻辑方法。激光系统展现出丰富多样的有用动力学行为,包括在神经元的时间分辨“尖峰”中也能发现的可激发动力学。尖峰将模拟处理的表现力和效率与数字处理的稳健性和可扩展性协调起来。我们展示了一个用于尖峰处理的统一平台,它由一个石墨烯耦合激光系统构成。我们表明,该平台能够同时展现逻辑电平恢复、可级联性和输入输出隔离——这些都是光学信息处理中的基本挑战。我们还实现了对更高层次处理至关重要的低层次尖峰处理任务:时间模式检测和稳定的循环记忆。我们在光纤激光系统的背景下研究了这些特性,并且提出并模拟了一种类似的集成器件。石墨烯的加入带来了许多源于其独特性质的优势,包括高吸收率和快速的载流子弛豫。这些优势可能会显著提高非传统激光处理器件的速度和效率,并且目前关于石墨烯微加工的研究有望实现与集成激光平台的兼容性。