Suppr超能文献

用石墨烯可激发激光器进行尖峰处理。

Spike processing with a graphene excitable laser.

作者信息

Shastri Bhavin J, Nahmias Mitchell A, Tait Alexander N, Rodriguez Alejandro W, Wu Ben, Prucnal Paul R

机构信息

Department of Electrical Engineering, Princeton University, Princeton, New Jersey 08544, USA.

出版信息

Sci Rep. 2016 Jan 12;6:19126. doi: 10.1038/srep19126.

Abstract

Novel materials and devices in photonics have the potential to revolutionize optical information processing, beyond conventional binary-logic approaches. Laser systems offer a rich repertoire of useful dynamical behaviors, including the excitable dynamics also found in the time-resolved "spiking" of neurons. Spiking reconciles the expressiveness and efficiency of analog processing with the robustness and scalability of digital processing. We demonstrate a unified platform for spike processing with a graphene-coupled laser system. We show that this platform can simultaneously exhibit logic-level restoration, cascadability and input-output isolation--fundamental challenges in optical information processing. We also implement low-level spike-processing tasks that are critical for higher level processing: temporal pattern detection and stable recurrent memory. We study these properties in the context of a fiber laser system and also propose and simulate an analogous integrated device. The addition of graphene leads to a number of advantages which stem from its unique properties, including high absorption and fast carrier relaxation. These could lead to significant speed and efficiency improvements in unconventional laser processing devices, and ongoing research on graphene microfabrication promises compatibility with integrated laser platforms.

摘要

光子学中的新型材料和器件有潜力彻底改变光学信息处理方式,超越传统的二进制逻辑方法。激光系统展现出丰富多样的有用动力学行为,包括在神经元的时间分辨“尖峰”中也能发现的可激发动力学。尖峰将模拟处理的表现力和效率与数字处理的稳健性和可扩展性协调起来。我们展示了一个用于尖峰处理的统一平台,它由一个石墨烯耦合激光系统构成。我们表明,该平台能够同时展现逻辑电平恢复、可级联性和输入输出隔离——这些都是光学信息处理中的基本挑战。我们还实现了对更高层次处理至关重要的低层次尖峰处理任务:时间模式检测和稳定的循环记忆。我们在光纤激光系统的背景下研究了这些特性,并且提出并模拟了一种类似的集成器件。石墨烯的加入带来了许多源于其独特性质的优势,包括高吸收率和快速的载流子弛豫。这些优势可能会显著提高非传统激光处理器件的速度和效率,并且目前关于石墨烯微加工的研究有望实现与集成激光平台的兼容性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7bf9/4709573/a69da4421d02/srep19126-f1.jpg

相似文献

1
Spike processing with a graphene excitable laser.
Sci Rep. 2016 Jan 12;6:19126. doi: 10.1038/srep19126.
2
Simultaneous excitatory and inhibitory dynamics in an excitable laser.
Opt Lett. 2018 Aug 1;43(15):3802-3805. doi: 10.1364/OL.43.003802.
3
Excitable laser processing network node in hybrid silicon: analysis and simulation.
Opt Express. 2015 Oct 5;23(20):26800-13. doi: 10.1364/OE.23.026800.
4
Spike latency and response properties of an excitable micropillar laser.
Phys Rev E. 2016 Oct;94(4-1):042219. doi: 10.1103/PhysRevE.94.042219. Epub 2016 Oct 24.
5
Improved transfer quality of CVD-grown graphene by ultrasonic processing of target substrates: applications for ultra-fast laser photonics.
ACS Appl Mater Interfaces. 2013 Oct 23;5(20):10288-93. doi: 10.1021/am403205v. Epub 2013 Oct 9.
6
Two distinct excitable responses for a laser with a saturable absorber.
Phys Rev E. 2018 Jun;97(6-1):062214. doi: 10.1103/PhysRevE.97.062214.
7
Scalable hybrid computation with spikes.
Neural Comput. 2002 Sep;14(9):2003-38. doi: 10.1162/089976602320263971.
9
Analog-to-spike encoding and time-efficient RF signal processing with photonic neurons.
Opt Express. 2022 Dec 19;30(26):46541-46551. doi: 10.1364/OE.479077.
10
Impact excitation and electron-hole multiplication in graphene and carbon nanotubes.
Acc Chem Res. 2013 Jun 18;46(6):1348-57. doi: 10.1021/ar300189j. Epub 2013 Jan 31.

引用本文的文献

1
A guidance to intelligent metamaterials and metamaterials intelligence.
Nat Commun. 2025 Jan 29;16(1):1154. doi: 10.1038/s41467-025-56122-3.
2
Photonic (computational) memories: tunable nanophotonics for data storage and computing.
Nanophotonics. 2022 May 16;11(17):3823-3854. doi: 10.1515/nanoph-2022-0089. eCollection 2022 Sep.
3
Photonic multiplexing techniques for neuromorphic computing.
Nanophotonics. 2023 Jan 9;12(5):795-817. doi: 10.1515/nanoph-2022-0485. eCollection 2023 Mar.
4
All-optical ultrafast ReLU function for energy-efficient nanophotonic deep learning.
Nanophotonics. 2022 May 2;12(5):847-855. doi: 10.1515/nanoph-2022-0137. eCollection 2023 Mar.
6
Free-standing millimeter-range 3D waveguides for on-chip optical interconnects.
Sci Rep. 2024 Aug 14;14(1):18899. doi: 10.1038/s41598-024-69522-0.
7
Photorefraction Simulates Well the Plasticity of Neural Synaptic Connections.
Biomimetics (Basel). 2024 Apr 13;9(4):231. doi: 10.3390/biomimetics9040231.
8
Neuromorphic Photonics Based on Phase Change Materials.
Nanomaterials (Basel). 2023 May 29;13(11):1756. doi: 10.3390/nano13111756.
9
Photonic online learning: a perspective.
Nanophotonics. 2023 Jan 9;12(5):833-845. doi: 10.1515/nanoph-2022-0553. eCollection 2023 Mar.
10
Inducing optical self-pulsation by electrically tuning graphene on a silicon microring.
Nanophotonics. 2022 May 2;11(17):4017-4025. doi: 10.1515/nanoph-2022-0077. eCollection 2022 Sep 2.

本文引用的文献

1
Excitable laser processing network node in hybrid silicon: analysis and simulation.
Opt Express. 2015 Oct 5;23(20):26800-13. doi: 10.1364/OE.23.026800.
3
Artificial brains. A million spiking-neuron integrated circuit with a scalable communication network and interface.
Science. 2014 Aug 8;345(6197):668-73. doi: 10.1126/science.1254642. Epub 2014 Aug 7.
4
Low threshold and high speed short cavity distributed feedback hybrid silicon lasers.
Opt Express. 2014 May 5;22(9):10202-9. doi: 10.1364/OE.22.010202.
5
Relative refractory period in an excitable semiconductor laser.
Phys Rev Lett. 2014 May 9;112(18):183902. doi: 10.1103/PhysRevLett.112.183902. Epub 2014 May 7.
6
Experimental demonstration of reservoir computing on a silicon photonics chip.
Nat Commun. 2014 Mar 24;5:3541. doi: 10.1038/ncomms4541.
7
Two types of asynchronous activity in networks of excitatory and inhibitory spiking neurons.
Nat Neurosci. 2014 Apr;17(4):594-600. doi: 10.1038/nn.3658. Epub 2014 Feb 23.
9
Finding a roadmap to achieve large neuromorphic hardware systems.
Front Neurosci. 2013 Sep 10;7:118. doi: 10.3389/fnins.2013.00118. eCollection 2013.
10
Control of excitable pulses in an injection-locked semiconductor laser.
Phys Rev E Stat Nonlin Soft Matter Phys. 2013 Aug;88(2):022923. doi: 10.1103/PhysRevE.88.022923. Epub 2013 Aug 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验