Suppr超能文献

乳腺密度估计的校准测量。

Calibrated measures for breast density estimation.

机构信息

H. Lee Moffitt Cancer Center & Research Institute, Cancer Prevention & Control Division, Tampa, FL 33612, USA.

出版信息

Acad Radiol. 2011 May;18(5):547-55. doi: 10.1016/j.acra.2010.12.007. Epub 2011 Mar 2.

Abstract

RATIONALE AND OBJECTIVES

Breast density is a significant breast cancer risk factor measured from mammograms. Evidence suggests that the spatial variation in mammograms may also be associated with risk. We investigated the variation in calibrated mammograms as a breast cancer risk factor and explored its relationship with other measures of breast density using full field digital mammography (FFDM).

MATERIALS AND METHODS

A matched case-control analysis was used to assess a spatial variation breast density measure in calibrated FFDM images, normalized for the image acquisition technique variation. Three measures of breast density were compared between cases and controls: (a) the calibrated average measure, (b) the calibrated variation measure, and (c) the standard percentage of breast density (PD) measure derived from operator-assisted labeling. Linear correlation and statistical relationships between these three breast density measures were also investigated.

RESULTS

Risk estimates associated with the lowest to highest quartiles for the calibrated variation measure were greater in magnitude (odds ratios: 1.0 [ref.], 3.5, 6.3, and 11.3) than the corresponding risk estimates for quartiles of the standard PD measure (odds ratios: 1.0 [ref.], 2.3, 5.6, and 6.5) and the calibrated average measure (odds ratios: 1.0 [ref.], 2.4, 2.3, and 4.4). The three breast density measures were highly correlated, showed an inverse relationship with breast area, and related by a mixed distribution relationship.

CONCLUSION

The three measures of breast density capture different attributes of the same data field. These preliminary findings indicate the variation measure is a viable automated method for assessing breast density. Insights gained by this work may be used to develop a standard for measuring breast density.

摘要

原理和目的

乳腺密度是通过乳房 X 光照片测量的一个重要乳腺癌风险因素。有证据表明,乳房 X 光照片的空间变化也可能与风险相关。我们研究了校准乳房 X 光照片的变化作为乳腺癌风险因素,并使用全视野数字乳房 X 光摄影(FFDM)探索了其与其他乳腺密度测量方法的关系。

材料和方法

采用病例对照匹配分析来评估校准 FFDM 图像中空间变化乳腺密度测量值,该值针对图像采集技术变化进行了归一化。在病例和对照组之间比较了三种乳腺密度测量值:(a)校准平均测量值,(b)校准变化测量值,以及(c)源自操作员辅助标记的标准百分比乳腺密度(PD)测量值。还研究了这三种乳腺密度测量值之间的线性相关性和统计学关系。

结果

与校准变化测量值的最低至最高四分位数相关的风险估计值的幅度更大(比值比:1.0 [参考],3.5,6.3 和 11.3),而与标准 PD 测量值四分位数的相应风险估计值(比值比:1.0 [参考],2.3,5.6 和 6.5)和校准平均测量值(比值比:1.0 [参考],2.4,2.3 和 4.4)相比。这三种乳腺密度测量值高度相关,与乳房面积呈反比关系,并且通过混合分布关系相关。

结论

三种乳腺密度测量值均捕获了同一数据字段的不同属性。这些初步发现表明,变化测量值是评估乳腺密度的一种可行的自动化方法。通过这项工作获得的见解可用于开发测量乳腺密度的标准。

相似文献

1
Calibrated measures for breast density estimation.
Acad Radiol. 2011 May;18(5):547-55. doi: 10.1016/j.acra.2010.12.007. Epub 2011 Mar 2.
4
Calibrated Breast Density Measurements.
Acad Radiol. 2019 Sep;26(9):1181-1190. doi: 10.1016/j.acra.2018.10.009. Epub 2018 Dec 10.
6
Automated Percentage of Breast Density Measurements for Full-field Digital Mammography Applications.
Acad Radiol. 2014 Aug;21(8):958-70. doi: 10.1016/j.acra.2014.04.006.
7
Comparison of percent density from raw and processed full-field digital mammography data.
Breast Cancer Res. 2013 Jan 4;15(1):R1. doi: 10.1186/bcr3372.
8
An automated approach for estimation of breast density.
Cancer Epidemiol Biomarkers Prev. 2008 Nov;17(11):3090-7. doi: 10.1158/1055-9965.EPI-08-0170.
9
Case-control study of mammographic density and breast cancer risk using processed digital mammograms.
Breast Cancer Res. 2016 May 21;18(1):53. doi: 10.1186/s13058-016-0715-3.

引用本文的文献

1
Reproductive risk factors for breast cancer and association with novel breast density measurements among Hispanic, Black, and White women.
Breast Cancer Res Treat. 2024 Apr;204(2):309-325. doi: 10.1007/s10549-023-07174-w. Epub 2023 Dec 14.
2
A genome-wide association study of mammographic texture variation.
Breast Cancer Res. 2022 Nov 7;24(1):76. doi: 10.1186/s13058-022-01570-8.
4
Spatial Correlation and Breast Cancer Risk.
Biomed Phys Eng Express. 2019 Jul;5(4). doi: 10.1088/2057-1976/ab1dad. Epub 2019 May 22.
5
Empirically-derived synthetic populations to mitigate small sample sizes.
J Biomed Inform. 2020 May;105:103408. doi: 10.1016/j.jbi.2020.103408. Epub 2020 Mar 12.
6
Volumetric breast density measurement for personalized screening: accuracy, reproducibility, consistency, and agreement with visual assessment.
J Med Imaging (Bellingham). 2019 Jul;6(3):031406. doi: 10.1117/1.JMI.6.3.031406. Epub 2019 Feb 5.
7
Calibrated Breast Density Measurements.
Acad Radiol. 2019 Sep;26(9):1181-1190. doi: 10.1016/j.acra.2018.10.009. Epub 2018 Dec 10.
8
Technical challenges in generalizing calibration techniques for breast density measurements.
Med Phys. 2019 Feb;46(2):679-688. doi: 10.1002/mp.13325. Epub 2019 Jan 11.
9
Generalized breast density metrics.
Phys Med Biol. 2018 Dec 19;64(1):015006. doi: 10.1088/1361-6560/aaf307.
10
Mammographic Breast Density in Chinese Women: Spatial Distribution and Autocorrelation Patterns.
PLoS One. 2015 Sep 2;10(9):e0136881. doi: 10.1371/journal.pone.0136881. eCollection 2015.

本文引用的文献

4
Cumulative sum quality control for calibrated breast density measurements.
Med Phys. 2009 Dec;36(12):5380-90. doi: 10.1118/1.3250842.
5
Mammographic density and breast cancer risk: evaluation of a novel method of measuring breast tissue volumes.
Cancer Epidemiol Biomarkers Prev. 2009 Jun;18(6):1754-62. doi: 10.1158/1055-9965.EPI-09-0107.
6
Texture features from mammographic images and risk of breast cancer.
Cancer Epidemiol Biomarkers Prev. 2009 Mar;18(3):837-45. doi: 10.1158/1055-9965.EPI-08-0631. Epub 2009 Mar 3.
7
Mammographic density. Measurement of mammographic density.
Breast Cancer Res. 2008;10(3):209. doi: 10.1186/bcr2102. Epub 2008 Jun 19.
8
Evaluating the effectiveness of using standard mammogram form to predict breast cancer risk: case-control study.
Cancer Epidemiol Biomarkers Prev. 2008 May;17(5):1074-81. doi: 10.1158/1055-9965.EPI-07-2634.
10
Mammographic density and the risk and detection of breast cancer.
N Engl J Med. 2007 Jan 18;356(3):227-36. doi: 10.1056/NEJMoa062790.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验