Suppr超能文献

乳腺X线图像的纹理特征与乳腺癌风险

Texture features from mammographic images and risk of breast cancer.

作者信息

Manduca Armando, Carston Michael J, Heine John J, Scott Christopher G, Pankratz V Shane, Brandt Kathy R, Sellers Thomas A, Vachon Celine M, Cerhan James R

机构信息

Department of Health Sciences Research, Mayo Clinic College of Medicine, 200 1st Street Southwest, Rochester, MN 55905, USA.

出版信息

Cancer Epidemiol Biomarkers Prev. 2009 Mar;18(3):837-45. doi: 10.1158/1055-9965.EPI-08-0631. Epub 2009 Mar 3.

Abstract

Mammographic percent density (PD) is a strong risk factor for breast cancer, but there has been relatively little systematic evaluation of other features in mammographic images that might additionally predict breast cancer risk. We evaluated the association of a large number of image texture features with risk of breast cancer using a clinic-based case-control study of digitized film mammograms, all with screening mammograms before breast cancer diagnosis. The sample was split into training (123 cases and 258 controls) and validation (123 cases and 264 controls) data sets. Age-adjusted and body mass index (BMI)-adjusted odds ratios (OR) per SD change in the feature, 95% confidence intervals, and the area under the receiver operator characteristic curve (AUC) were obtained using logistic regression. A bootstrap approach was used to identify the strongest features in the training data set, and results for features that validated in the second half of the sample were reported using the full data set. The mean age at mammography was 64.0+/-10.2 years, and the mean time from mammography to breast cancer was 3.7+/-1.0 (range, 2.0-5.9 years). PD was associated with breast cancer risk (OR, 1.49; 95% confidence interval, 1.25-1.78). The strongest features that validated from each of several classes (Markovian, run length, Laws, wavelet, and Fourier) showed similar ORs as PD and predicted breast cancer at a similar magnitude (AUC=0.58-0.60) as PD (AUC=0.58). All of these features were automatically calculated (unlike PD) and measure texture at a coarse scale. These features were moderately correlated with PD (r=0.39-0.76), and after adjustment for PD, each of the features attenuated only slightly and retained statistical significance. However, simultaneous inclusion of these features in a model with PD did not significantly improve the ability to predict breast cancer.

摘要

乳腺X线摄影密度百分比(PD)是乳腺癌的一个重要风险因素,但对于乳腺X线图像中其他可能额外预测乳腺癌风险的特征,系统性评估相对较少。我们通过一项基于临床的数字化乳腺钼靶片病例对照研究,评估了大量图像纹理特征与乳腺癌风险的关联,所有病例在乳腺癌诊断前均有筛查乳腺钼靶片。样本被分为训练数据集(123例病例和258例对照)和验证数据集(123例病例和264例对照)。使用逻辑回归获得特征每标准差变化的年龄调整和体重指数(BMI)调整比值比(OR)、95%置信区间以及受试者工作特征曲线下面积(AUC)。采用自助法在训练数据集中识别最强特征,并使用完整数据集报告在样本后半部分验证的特征结果。乳腺钼靶摄影的平均年龄为64.0±10.2岁,从乳腺钼靶摄影到乳腺癌的平均时间为3.7±1.0年(范围为2.0 - 5.9年)。PD与乳腺癌风险相关(OR为1.49;95%置信区间为1.25 - 1.78)。从几个类别(马尔可夫、游程长度、劳斯、小波和傅里叶)中验证的最强特征显示出与PD相似的OR,并在与PD相似的程度上预测乳腺癌(AUC = 0.58 - 0.60),而PD的AUC为0.58。所有这些特征都是自动计算的(与PD不同),并且在粗略尺度上测量纹理。这些特征与PD中度相关(r = 0.39 - 0.76),在调整PD后,每个特征仅略有减弱并保留统计学意义。然而,在包含PD的模型中同时纳入这些特征并没有显著提高预测乳腺癌的能力。

相似文献

1
Texture features from mammographic images and risk of breast cancer.乳腺X线图像的纹理特征与乳腺癌风险
Cancer Epidemiol Biomarkers Prev. 2009 Mar;18(3):837-45. doi: 10.1158/1055-9965.EPI-08-0631. Epub 2009 Mar 3.

引用本文的文献

本文引用的文献

2
Mammographic breast density as a general marker of breast cancer risk.乳腺钼靶密度作为乳腺癌风险的一般标志物。
Cancer Epidemiol Biomarkers Prev. 2007 Jan;16(1):43-9. doi: 10.1158/1055-9965.EPI-06-0738.
6
A longitudinal investigation of mammographic density: the multiethnic cohort.乳腺X线密度的纵向研究:多族裔队列研究
Cancer Epidemiol Biomarkers Prev. 2006 Apr;15(4):732-9. doi: 10.1158/1055-9965.EPI-05-0798.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验