Department of Statistics and Applied Mathematics, Almería University, Carreterade Sacramento s/n, Almería, Spain.
Invest Ophthalmol Vis Sci. 2011 Jul 1;52(8):4963-70. doi: 10.1167/iovs.10-6774.
To introduce an iterative, multiscale procedure that allows for better reconstruction of the shape of the anterior surface of the cornea from altimetric data collected by a corneal topographer.
The report describes, first, an adaptive, multiscale mathematical algorithm for the parsimonious fit of the corneal surface data that adapts the number of functions used in the reconstruction to the conditions of each cornea. The method also implements a dynamic selection of the parameters and the management of noise. Then, several numerical experiments are performed, comparing it with the results obtained by the standard Zernike-based procedure.
The numerical experiments showed that the algorithm exhibits steady exponential error decay, independent of the level of aberration of the cornea. The complexity of each anisotropic Gaussian-basis function in the functional representation is the same, but the parameters vary to fit the current scale. This scale is determined only by the residual errors and not by the number of the iteration. Finally, the position and clustering of the centers, as well as the size of the shape parameters, provides additional spatial information about the regions of higher irregularity.
The methodology can be used for the real-time reconstruction of both altimetric data and corneal power maps from the data collected by keratoscopes, such as the Placido ring-based topographers, that will be decisive in early detection of corneal diseases such as keratoconus.
介绍一种迭代、多尺度的方法,该方法可以从角膜地形图采集的高度数据中更好地重建角膜前表面的形状。
本报告首先描述了一种自适应、多尺度的数学算法,用于对角膜表面数据进行简洁拟合,该算法可根据每个角膜的情况自适应地调整重建中使用的函数数量。该方法还实现了参数的动态选择和噪声管理。然后,进行了几个数值实验,将其与基于 Zernike 的标准程序的结果进行了比较。
数值实验表明,该算法表现出稳定的指数误差衰减,与角膜的像差水平无关。在功能表示中,各各向异性高斯基函数的复杂度相同,但参数会根据当前尺度进行调整以适应数据。该尺度仅由残差确定,而与迭代次数无关。最后,中心的位置和聚类以及形状参数的大小提供了关于更高不规则区域的附加空间信息。
该方法可用于实时重建高度数据和角膜地形图,该方法可从基于 Placido 盘的角膜地形图等角膜镜采集的数据中获取,这对于早期检测角膜疾病(如圆锥角膜)至关重要。