Cavas-Martínez Francisco, Fernández-Pacheco Daniel G, De la Cruz-Sánchez Ernesto, Nieto Martínez José, Fernández Cañavate Francisco J, Vega-Estrada Alfredo, Plaza-Puche Ana B, Alió Jorge L
Department of Graphical Expression, Technical University of Cartagena, Cartagena, Spain.
Department of Physical Activity and Sport, University of Murcia, Murcia, Spain.
PLoS One. 2014 Oct 17;9(10):e110249. doi: 10.1371/journal.pone.0110249. eCollection 2014.
To establish a new procedure for 3D geometric reconstruction of the human cornea to obtain a solid model that represents a personalized and in vivo morphology of both the anterior and posterior corneal surfaces. This model is later analyzed to obtain geometric variables enabling the characterization of the corneal geometry and establishing a new clinical diagnostic criterion in order to distinguish between healthy corneas and corneas with keratoconus.
The method for the geometric reconstruction of the cornea consists of the following steps: capture and preprocessing of the spatial point clouds provided by the Sirius topographer that represent both anterior and posterior corneal surfaces, reconstruction of the corneal geometric surfaces and generation of the solid model. Later, geometric variables are extracted from the model obtained and statistically analyzed to detect deformations of the cornea.
The variables that achieved the best results in the diagnosis of keratoconus were anterior corneal surface area (ROC area: 0.847, p<0.000, std. error: 0.038, 95% CI: 0.777 to 0.925), posterior corneal surface area (ROC area: 0.807, p<0.000, std. error: 0.042, 95% CI: 0,726 to 0,889), anterior apex deviation (ROC area: 0.735, p<0.000, std. error: 0.053, 95% CI: 0.630 to 0.840) and posterior apex deviation (ROC area: 0.891, p<0.000, std. error: 0.039, 95% CI: 0.8146 to 0.9672).
Geometric modeling enables accurate characterization of the human cornea. Also, from a clinical point of view, the procedure described has established a new approach for the study of eye-related diseases.
建立一种新的人角膜三维几何重建程序,以获得一个代表角膜前后表面个性化和体内形态的实体模型。随后对该模型进行分析,以获取能够表征角膜几何形状的几何变量,并建立一种新的临床诊断标准,用于区分健康角膜和圆锥角膜。
角膜几何重建方法包括以下步骤:捕捉并预处理由Sirius地形图仪提供的代表角膜前后表面的空间点云,重建角膜几何表面并生成实体模型。随后,从获得的模型中提取几何变量并进行统计分析,以检测角膜变形。
在圆锥角膜诊断中取得最佳结果的变量为角膜前表面面积(ROC面积:0.847,p<0.000,标准误差:0.038,95%置信区间:0.777至0.925)、角膜后表面面积(ROC面积:0.807,p<0.000,标准误差:0.042,95%置信区间:0.726至0.889)、前顶点偏差(ROC面积:0.735,p<0.000,标准误差:0.053,95%置信区间:0.630至0.840)和后顶点偏差(ROC面积:0.891,p<0.000,标准误差:0.039,95%置信区间:0.8146至0.9672)。
几何建模能够准确表征人角膜。此外,从临床角度来看,所描述的程序为眼部相关疾病的研究建立了一种新方法。