Suppr超能文献

募集/去募集动态对可变通气疗效的影响。

Effects of recruitment/derecruitment dynamics on the efficacy of variable ventilation.

机构信息

Vermont Lung Center, Department of Medicine, University of Vermont College of Medicine, Burlington, VT 05405, USA.

出版信息

J Appl Physiol (1985). 2011 May;110(5):1319-26. doi: 10.1152/japplphysiol.01364.2010. Epub 2011 Mar 3.

Abstract

Variable (or noisy) ventilation (VV) has been demonstrated in animal models of acute lung injury to be superior to constant (or conventional) ventilation (CV), in terms of improved gas exchange and mitigation of lung injury, for reasons that are not entirely clear. We hypothesized that the efficacy of VV is related to the fact that recruitment and derecruitment of lung units are dynamic processes. To test this hypothesis, we modeled the lung computationally as a symmetrically bifurcating airway tree terminating in elastic units. Each airway was fully open or completely closed, at any point in time, according to its pressure history. The model is able to accurately mimic previous experimental measurements showing that the lungs of mice injured by acid aspiration are better recruited after 60 min of VV than CV. The model also shows that recruitment/derecruitment dynamics contribute to the relative efficacy of VV, provided lung units open more rapidly than they close once a critical opening or closing pressure threshold has been crossed. We conclude that the dynamics of recruitment and derecruitment in the lung may be important factors responsible for the benefits of VV compared with CV.

摘要

变异性(或噪声性)通气(VV)已在急性肺损伤的动物模型中得到证实,与常规通气(CV)相比,VV 在改善气体交换和减轻肺损伤方面更具优势,但其具体原因尚不完全清楚。我们假设 VV 的疗效与肺单位的复张和去复张是动态过程这一事实有关。为了验证这一假设,我们将肺通过计算机建模为一个对称分支的气道树,终止于弹性单元。根据气道的压力历史,每个气道在任何时候都完全打开或完全关闭。该模型能够准确模拟先前的实验测量结果,表明在酸吸入损伤后的小鼠中,VV 通气 60 分钟后比 CV 通气能更好地复张。该模型还表明,一旦跨越了临界开放或关闭压力阈值,开放和关闭的速度更快,复张/去复张的动力学对 VV 的相对疗效有贡献。我们得出结论,肺的复张和去复张的动力学可能是 VV 与 CV 相比具有优势的重要因素。

相似文献

1
Effects of recruitment/derecruitment dynamics on the efficacy of variable ventilation.
J Appl Physiol (1985). 2011 May;110(5):1319-26. doi: 10.1152/japplphysiol.01364.2010. Epub 2011 Mar 3.
2
Design of a new variable-ventilation method optimized for lung recruitment in mice.
J Appl Physiol (1985). 2008 May;104(5):1329-40. doi: 10.1152/japplphysiol.01002.2007. Epub 2008 Mar 13.
3
Predicting the response of the injured lung to the mechanical breath profile.
J Appl Physiol (1985). 2015 Apr 1;118(7):932-40. doi: 10.1152/japplphysiol.00902.2014. Epub 2015 Jan 29.
4
Comparison of variable and conventional ventilation in a sheep saline lavage lung injury model.
Crit Care Med. 2006 Feb;34(2):439-45. doi: 10.1097/01.ccm.0000196208.01682.87.
5
Role of airway recruitment and derecruitment in lung injury.
Crit Rev Biomed Eng. 2011;39(4):297-317. doi: 10.1615/critrevbiomedeng.v39.i4.40.
6
Modeling the complex dynamics of derecruitment in the lung.
Ann Biomed Eng. 2010 Nov;38(11):3466-77. doi: 10.1007/s10439-010-0095-2. Epub 2010 Jun 15.
7
Modeling the dynamics of recruitment and derecruitment in mice with acute lung injury.
J Appl Physiol (1985). 2008 Dec;105(6):1813-21. doi: 10.1152/japplphysiol.90806.2008. Epub 2008 Oct 23.
8
Assisted mechanical ventilation using elastic unloading: a study in cats with normal and injured lungs.
Pediatr Res. 1993 Nov;34(5):600-5. doi: 10.1203/00006450-199311000-00009.

引用本文的文献

2
Lung recruitment by continuous negative extra-thoracic pressure support following one-lung ventilation: an experimental study.
Front Physiol. 2023 May 15;14:1160731. doi: 10.3389/fphys.2023.1160731. eCollection 2023.
3
Sevoflurane and Hypercapnia Blunt the Physiological Variability of Spontaneous Breathing: A Comparative Interventional Study.
Front Physiol. 2022 Apr 11;13:871070. doi: 10.3389/fphys.2022.871070. eCollection 2022.
4
Ventilator-induced lung injury and lung mechanics.
Ann Transl Med. 2018 Oct;6(19):378. doi: 10.21037/atm.2018.06.29.
9
Positive end-expiratory pressure and variable ventilation in lung-healthy rats under general anesthesia.
PLoS One. 2014 Nov 10;9(11):e110817. doi: 10.1371/journal.pone.0110817. eCollection 2014.
10
Should we breathe quiet or noisy?
Crit Care. 2014 Mar 11;18(2):116. doi: 10.1186/cc13762.

本文引用的文献

1
Modeling the complex dynamics of derecruitment in the lung.
Ann Biomed Eng. 2010 Nov;38(11):3466-77. doi: 10.1007/s10439-010-0095-2. Epub 2010 Jun 15.
2
Variable tidal volumes improve lung protective ventilation strategies in experimental lung injury.
Am J Respir Crit Care Med. 2009 Apr 15;179(8):684-93. doi: 10.1164/rccm.200806-975OC. Epub 2009 Jan 16.
3
Variable stretch pattern enhances surfactant secretion in alveolar type II cells in culture.
Am J Physiol Lung Cell Mol Physiol. 2009 Apr;296(4):L574-81. doi: 10.1152/ajplung.90454.2008. Epub 2009 Jan 9.
4
The Pulsatile Propagation of a Finger of Air Within a Fluid-Occluded Cylindrical Tube.
J Fluid Mech. 2008 Apr;601:1-23. doi: 10.1017/S0022112008000360.
5
The role of time and pressure on alveolar recruitment.
J Appl Physiol (1985). 2009 Mar;106(3):757-65. doi: 10.1152/japplphysiol.90735.2008. Epub 2008 Dec 12.
6
Modeling the dynamics of recruitment and derecruitment in mice with acute lung injury.
J Appl Physiol (1985). 2008 Dec;105(6):1813-21. doi: 10.1152/japplphysiol.90806.2008. Epub 2008 Oct 23.
7
Physicochemical effects enhance surfactant transport in pulsatile motion of a semi-infinite bubble.
Biophys J. 2009 Jan;96(1):312-27. doi: 10.1529/biophysj.108.131805.
9
The mechanics of airway closure.
Respir Physiol Neurobiol. 2008 Nov 30;163(1-3):214-21. doi: 10.1016/j.resp.2008.05.013. Epub 2008 May 23.
10
Design of a new variable-ventilation method optimized for lung recruitment in mice.
J Appl Physiol (1985). 2008 May;104(5):1329-40. doi: 10.1152/japplphysiol.01002.2007. Epub 2008 Mar 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验