Suppr超能文献

气道复张和去复张在肺损伤中的作用。

Role of airway recruitment and derecruitment in lung injury.

作者信息

Ghadiali Samir, Huang Y

机构信息

Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio 43221, USA.

出版信息

Crit Rev Biomed Eng. 2011;39(4):297-317. doi: 10.1615/critrevbiomedeng.v39.i4.40.

Abstract

The mechanical forces generated during the ventilation of patients with acute lung injury causes significant lung damage and inflammation. Low-volume ventilation protocols are commonly used to prevent stretch-related injury that occurs at high lung volumes. However, the cyclic closure and reopening of pulmonary airways at low lung volumes, i.e., derecruitment and recruitment, also causes significant lung damage and inflammation. In this review, we provide an overview of how biomedical engineering techniques are being used to elucidate the complex physiological and biomechanical mechanisms responsible for cellular injury during recruitment/derecruitment. We focus on the development of multiscale, multiphysics computational models of cell deformation and injury during airway reopening. These models, and the corresponding in vitro experiments, have been used to both elucidate the basic mechanisms responsible for recruitment/derecruitment injury and to develop alternative therapies that make the epithelium more resistant to injury. For example, models and experiments indicate that fluidization of the cytoskeleton is cytoprotective and that changes in cytoskeletal structure and cell mechanics can be used to mitigate the mechanotransduction of oscillatory pressure into inflammatory signaling. The continued application of biomedical engineering techniques to the problem of recruitment/derecruitment injury may therefore lead to novel and more effective therapies.

摘要

急性肺损伤患者通气过程中产生的机械力会导致严重的肺损伤和炎症。小潮气量通气方案通常用于预防高肺容积时发生的牵张相关损伤。然而,在低肺容积时肺气道的周期性关闭和重新开放,即肺不张和复张,也会导致严重的肺损伤和炎症。在本综述中,我们概述了生物医学工程技术如何用于阐明在肺复张/肺不张期间导致细胞损伤的复杂生理和生物力学机制。我们重点关注气道重新开放过程中细胞变形和损伤的多尺度、多物理场计算模型的开发。这些模型以及相应的体外实验,已被用于阐明肺复张/肺不张损伤的基本机制,并开发使上皮细胞更耐受损伤的替代疗法。例如,模型和实验表明细胞骨架的流化具有细胞保护作用,并且细胞骨架结构和细胞力学的变化可用于减轻振荡压力向炎症信号的机械转导。因此,生物医学工程技术持续应用于肺复张/肺不张损伤问题可能会带来新的、更有效的治疗方法。

相似文献

1
Role of airway recruitment and derecruitment in lung injury.气道复张和去复张在肺损伤中的作用。
Crit Rev Biomed Eng. 2011;39(4):297-317. doi: 10.1615/critrevbiomedeng.v39.i4.40.
5
Biomechanics of liquid-epithelium interactions in pulmonary airways.肺气道中液体-上皮相互作用的生物力学
Respir Physiol Neurobiol. 2008 Nov 30;163(1-3):232-43. doi: 10.1016/j.resp.2008.04.008. Epub 2008 Apr 22.
6
Effects of recruitment/derecruitment dynamics on the efficacy of variable ventilation.募集/去募集动态对可变通气疗效的影响。
J Appl Physiol (1985). 2011 May;110(5):1319-26. doi: 10.1152/japplphysiol.01364.2010. Epub 2011 Mar 3.
9
Clinical review: bedside assessment of alveolar recruitment.
Crit Care. 2004 Jun;8(3):163-9. doi: 10.1186/cc2391. Epub 2003 Oct 22.

引用本文的文献

9
Optimal Ventilator Strategies in Acute Respiratory Distress Syndrome.急性呼吸窘迫综合征的最佳呼吸机策略。
Semin Respir Crit Care Med. 2019 Feb;40(1):81-93. doi: 10.1055/s-0039-1683896. Epub 2019 May 6.
10
Pulmonary Capillary Hemorrhage Induced by Diagnostic Ultrasound in Ventilated Rats.诊断性超声诱发通气大鼠肺毛细血管出血
Ultrasound Med Biol. 2018 Aug;44(8):1810-1817. doi: 10.1016/j.ultrasmedbio.2018.04.014. Epub 2018 May 18.

本文引用的文献

4
Determinants of plasma membrane wounding by deforming stress.变形压力导致质膜损伤的决定因素。
Am J Physiol Lung Cell Mol Physiol. 2010 Dec;299(6):L826-33. doi: 10.1152/ajplung.00217.2010. Epub 2010 Oct 1.
8
Modeling the complex dynamics of derecruitment in the lung.模拟肺部去招募的复杂动力学。
Ann Biomed Eng. 2010 Nov;38(11):3466-77. doi: 10.1007/s10439-010-0095-2. Epub 2010 Jun 15.
9

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验