Suppr超能文献

一种用于模拟可变形界面上物质数量的传输、扩散和吸附/解吸的扩散界面方法。

A DIFFUSE-INTERFACE APPROACH FOR MODELING TRANSPORT, DIFFUSION AND ADSORPTION/DESORPTION OF MATERIAL QUANTITIES ON A DEFORMABLE INTERFACE.

作者信息

Teigen Knut Erik, Li Xiangrong, Lowengrub John, Wang Fan, Voigt Axel

机构信息

Department of Energy and Process Engineering, Norwegian University of Science and Technology, 7491 Trondheim, Norway (

出版信息

Commun Math Sci. 2009 Dec;4(7):1009-1037. doi: 10.4310/cms.2009.v7.n4.a10.

Abstract

A method is presented to solve two-phase problems involving a material quantity on an interface. The interface can be advected, stretched, and change topology, and material can be adsorbed to or desorbed from it. The method is based on the use of a diffuse interface framework, which allows a simple implementation using standard finite-difference or finite-element techniques. Here, finite-difference methods on a block-structured adaptive grid are used, and the resulting equations are solved using a non-linear multigrid method. Interfacial flow with soluble surfactants is used as an example of the application of the method, and several test cases are presented demonstrating its accuracy and convergence.

摘要

本文提出了一种解决涉及界面上物质数量的两相问题的方法。该界面可以被平流、拉伸并改变拓扑结构,物质可以在其上吸附或解吸。该方法基于使用扩散界面框架,这允许使用标准的有限差分或有限元技术进行简单实现。在这里,使用了块结构自适应网格上的有限差分方法,并使用非线性多重网格方法求解所得方程。以含可溶性表面活性剂的界面流动为例展示该方法的应用,并给出了几个测试案例以证明其准确性和收敛性。

相似文献

2
A diffuse-interface method for two-phase flows with soluble surfactants.
J Comput Phys. 2011 Jan 20;230(2):375-393. doi: 10.1016/j.jcp.2010.09.020.
3
A Kernel-free Boundary Integral Method for Elliptic Boundary Value Problems.
J Comput Phys. 2007 Dec 10;227(2):1046-1074. doi: 10.1016/j.jcp.2007.08.021. Epub 2007 Sep 5.
4
A Hexahedral Multigrid Approach for Simulating Cuts in Deformable Objects.
IEEE Trans Vis Comput Graph. 2011 Nov;17(11):1663-75. doi: 10.1109/TVCG.2010.268. Epub 2010 Dec 23.
5
A sharp interface Lagrangian-Eulerian method for flexible-body fluid-structure interaction.
J Comput Phys. 2023 Sep 1;488. doi: 10.1016/j.jcp.2023.112174. Epub 2023 Apr 24.
6
SOME NEW FINITE DIFFERENCE METHODS FOR HELMHOLTZ EQUATIONS ON IRREGULAR DOMAINS OR WITH INTERFACES.
Discrete Continuous Dyn Syst Ser B. 2012 Jun;17(4):1155-1174. doi: 10.3934/dcdsb.2012.17.1155.
7
A consistent diffuse-interface model for two-phase flow problems with rapid evaporation.
Adv Model Simul Eng Sci. 2024;11(1):19. doi: 10.1186/s40323-024-00276-0. Epub 2024 Nov 13.
8
Fast and Robust Sixth Order Multigrid Computation for 3D Convection Diffusion Equation.
J Comput Appl Math. 2010 Oct 15;234(12):3496-3506. doi: 10.1016/j.cam.2010.05.022.
9
Reversible Adsorption of Nanoparticles at Surfactant-Laden Liquid-Liquid Interfaces.
Langmuir. 2019 Aug 27;35(34):11089-11098. doi: 10.1021/acs.langmuir.9b01568. Epub 2019 Aug 15.
10
A partially penalty immersed Crouzeix-Raviart finite element method for interface problems.
J Inequal Appl. 2017;2017(1):186. doi: 10.1186/s13660-017-1461-5. Epub 2017 Aug 14.

引用本文的文献

1
Modelling glioma progression, mass effect and intracranial pressure in patient anatomy.
J R Soc Interface. 2022 Mar;19(188):20210922. doi: 10.1098/rsif.2021.0922. Epub 2022 Mar 23.
2
The Role of Cytoplasmic MEX-5/6 Polarity in Asymmetric Cell Division.
Bull Math Biol. 2021 Feb 17;83(4):29. doi: 10.1007/s11538-021-00860-0.
3
Tumor growth and calcification in evolving microenvironmental geometries.
J Theor Biol. 2019 Feb 21;463:138-154. doi: 10.1016/j.jtbi.2018.12.006. Epub 2018 Dec 5.
4
Stability and error analysis for a diffuse interface approach to an advection-diffusion equation on a moving surface.
Numer Math (Heidelb). 2018;139(3):709-741. doi: 10.1007/s00211-018-0946-6. Epub 2018 Jan 25.
5
Exploring the inhibitory effect of membrane tension on cell polarization.
PLoS Comput Biol. 2017 Jan 30;13(1):e1005354. doi: 10.1371/journal.pcbi.1005354. eCollection 2017 Jan.
6
Immersed Boundary Simulations of Active Fluid Droplets.
PLoS One. 2016 Sep 8;11(9):e0162474. doi: 10.1371/journal.pone.0162474. eCollection 2016.
8
Diffuse interface models of locally inextensible vesicles in a viscous fluid.
J Comput Phys. 2014 Nov 15;277:32-47. doi: 10.1016/j.jcp.2014.08.016.
9
Tumor growth in complex, evolving microenvironmental geometries: a diffuse domain approach.
J Theor Biol. 2014 Nov 21;361:14-30. doi: 10.1016/j.jtbi.2014.06.024. Epub 2014 Jul 9.
10
Signaling networks and cell motility: a computational approach using a phase field description.
J Math Biol. 2014 Jul;69(1):91-112. doi: 10.1007/s00285-013-0704-4. Epub 2013 Jul 9.

本文引用的文献

1
SOLVING PDES IN COMPLEX GEOMETRIES: A DIFFUSE DOMAIN APPROACH.
Commun Math Sci. 2009 Mar 1;7(1):81-107. doi: 10.4310/cms.2009.v7.n1.a4.
2
A New Ghost Cell/Level Set Method for Moving Boundary Problems: Application to Tumor Growth.
J Sci Comput. 2008 Jun 1;35(2-3):266-299. doi: 10.1007/s10915-008-9190-z.
3
Self-sustained spatiotemporal oscillations induced by membrane-bulk coupling.
Phys Rev Lett. 2007 Apr 20;98(16):168303. doi: 10.1103/PhysRevLett.98.168303.
4
Membrane-bound Turing patterns.
Phys Rev E Stat Nonlin Soft Matter Phys. 2005 Dec;72(6 Pt 1):061912. doi: 10.1103/PhysRevE.72.061912. Epub 2005 Dec 19.
6
Computational approach for modeling intra- and extracellular dynamics.
Phys Rev E Stat Nonlin Soft Matter Phys. 2003 Sep;68(3 Pt 2):037702. doi: 10.1103/PhysRevE.68.037702. Epub 2003 Sep 26.
7
The effect of surfactant on the efficiency of shear-induced drop coalescence.
J Colloid Interface Sci. 2003 Sep 15;265(2):409-21. doi: 10.1016/s0021-9797(03)00396-5.
8
Evolution of nanoporosity in dealloying.
Nature. 2001 Mar 22;410(6827):450-3. doi: 10.1038/35068529.
9
Model for the fingering instability of spreading surfactant drops.
Phys Rev Lett. 1990 Jul 16;65(3):333-336. doi: 10.1103/PhysRevLett.65.333.
10
Phase-field method for computationally efficient modeling of solidification with arbitrary interface kinetics.
Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 1996 Apr;53(4):R3017-R3020. doi: 10.1103/physreve.53.r3017.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验