Wei Peng, Pan Wei
University of Minnesota, Minneapolis, USA.
J R Stat Soc Ser C Appl Stat. 2010 Jan 1;59(1):105-125. doi: 10.1111/j.1467-9876.2009.00686.x.
As biological knowledge accumulates rapidly, gene networks encoding genome-wide gene-gene interactions have been constructed. As an improvement over the standard mixture model that tests all the genes iid a priori, Wei and Li (2007) and Wei and Pan (2008) proposed modeling a gene network as a Discrete- or Gaussian-Markov random field (DMRF or GMRF) respectively in a mixture model to analyze genomic data. However, how these methods compare in practical applications in not well understood and this is the aim here. We also propose two novel constraints in prior specifications for the GMRF model and a fully Bayesian approach to the DMRF model. We assess the accuracy of estimating the False Discovery Rate (FDR) by posterior probabilities in the context of MRF models. Applications to a ChIP-chip data set and simulated data show that the modified GMRF models has superior performance as compared with other models, while both MRF-based mixture models, with reasonable robustness to misspecified gene networks, outperform the standard mixture model.
随着生物学知识的迅速积累,编码全基因组基因-基因相互作用的基因网络已被构建。作为对先验独立同分布地测试所有基因的标准混合模型的改进,Wei和Li(2007年)以及Wei和Pan(2008年)分别提出在混合模型中将基因网络建模为离散或高斯马尔可夫随机场(DMRF或GMRF)来分析基因组数据。然而,这些方法在实际应用中的比较情况尚不清楚,这就是本文的目的所在。我们还针对GMRF模型在先验规范中提出了两个新的约束条件,并针对DMRF模型提出了一种完全贝叶斯方法。我们在MRF模型的背景下评估通过后验概率估计错误发现率(FDR)的准确性。对一个芯片杂交数据集和模拟数据的应用表明,与其他模型相比,改进后的GMRF模型具有优越的性能,而基于MRF的两种混合模型,对错误指定的基因网络具有合理的稳健性,均优于标准混合模型。