Suppr超能文献

基于网络的基因组发现:马尔可夫随机场模型的应用与比较

Network-based genomic discovery: application and comparison of Markov random field models.

作者信息

Wei Peng, Pan Wei

机构信息

University of Minnesota, Minneapolis, USA.

出版信息

J R Stat Soc Ser C Appl Stat. 2010 Jan 1;59(1):105-125. doi: 10.1111/j.1467-9876.2009.00686.x.

Abstract

As biological knowledge accumulates rapidly, gene networks encoding genome-wide gene-gene interactions have been constructed. As an improvement over the standard mixture model that tests all the genes iid a priori, Wei and Li (2007) and Wei and Pan (2008) proposed modeling a gene network as a Discrete- or Gaussian-Markov random field (DMRF or GMRF) respectively in a mixture model to analyze genomic data. However, how these methods compare in practical applications in not well understood and this is the aim here. We also propose two novel constraints in prior specifications for the GMRF model and a fully Bayesian approach to the DMRF model. We assess the accuracy of estimating the False Discovery Rate (FDR) by posterior probabilities in the context of MRF models. Applications to a ChIP-chip data set and simulated data show that the modified GMRF models has superior performance as compared with other models, while both MRF-based mixture models, with reasonable robustness to misspecified gene networks, outperform the standard mixture model.

摘要

随着生物学知识的迅速积累,编码全基因组基因-基因相互作用的基因网络已被构建。作为对先验独立同分布地测试所有基因的标准混合模型的改进,Wei和Li(2007年)以及Wei和Pan(2008年)分别提出在混合模型中将基因网络建模为离散或高斯马尔可夫随机场(DMRF或GMRF)来分析基因组数据。然而,这些方法在实际应用中的比较情况尚不清楚,这就是本文的目的所在。我们还针对GMRF模型在先验规范中提出了两个新的约束条件,并针对DMRF模型提出了一种完全贝叶斯方法。我们在MRF模型的背景下评估通过后验概率估计错误发现率(FDR)的准确性。对一个芯片杂交数据集和模拟数据的应用表明,与其他模型相比,改进后的GMRF模型具有优越的性能,而基于MRF的两种混合模型,对错误指定的基因网络具有合理的稳健性,均优于标准混合模型。

相似文献

7
Bayesian Inference of Multiple Gaussian Graphical Models.多个高斯图形模型的贝叶斯推断
J Am Stat Assoc. 2015 Mar 1;110(509):159-174. doi: 10.1080/01621459.2014.896806.

引用本文的文献

2
DNLC: differential network local consistency analysis.DNLC:差异网络局部一致性分析。
BMC Bioinformatics. 2019 Dec 24;20(Suppl 15):489. doi: 10.1186/s12859-019-3046-4.
5
Detecting subnetwork-level dynamic correlations.检测子网级动态相关性。
Bioinformatics. 2017 Jan 15;33(2):256-265. doi: 10.1093/bioinformatics/btw616. Epub 2016 Sep 25.

本文引用的文献

1
Protein networks in disease.疾病中的蛋白质网络
Genome Res. 2008 Apr;18(4):644-52. doi: 10.1101/gr.071852.107.
2
MMG: a probabilistic tool to identify submodules of metabolic pathways.MMG:一种用于识别代谢途径子模块的概率工具。
Bioinformatics. 2008 Apr 15;24(8):1078-84. doi: 10.1093/bioinformatics/btn066. Epub 2008 Feb 21.
5
Comparison of human protein-protein interaction maps.人类蛋白质-蛋白质相互作用图谱的比较。
Bioinformatics. 2007 Mar 1;23(5):605-11. doi: 10.1093/bioinformatics/btl683. Epub 2007 Jan 19.
6
Integrated assessment and prediction of transcription factor binding.转录因子结合的综合评估与预测
PLoS Comput Biol. 2006 Jun 16;2(6):e70. doi: 10.1371/journal.pcbi.0020070.
10
A probabilistic functional network of yeast genes.酵母基因的概率功能网络。
Science. 2004 Nov 26;306(5701):1555-8. doi: 10.1126/science.1099511.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验