CEA, BIG, Biologie à Grande Echelle, F-38054 Grenoble, France.
Université Grenoble-Alpes, F-38000 Grenoble, France.
Bioinformatics. 2017 Jul 15;33(14):i170-i179. doi: 10.1093/bioinformatics/btx244.
Incorporating gene interaction data into the identification of 'hit' genes in genomic experiments is a well-established approach leveraging the 'guilt by association' assumption to obtain a network based hit list of functionally related genes. We aim to develop a method to allow for multivariate gene scores and multiple hit labels in order to extend the analysis of genomic screening data within such an approach.
We propose a Markov random field-based method to achieve our aim and show that the particular advantages of our method compared with those currently used lead to new insights in previously analysed data as well as for our own motivating data. Our method additionally achieves the best performance in an independent simulation experiment. The real data applications we consider comprise of a survival analysis and differential expression experiment and a cell-based RNA interference functional screen.
We provide all of the data and code related to the results in the paper.
sean.j.robinson@utu.fi or laurent.guyon@cea.fr.
Supplementary data are available at Bioinformatics online.
将基因相互作用数据纳入基因组实验中“命中”基因的识别是一种行之有效的方法,利用“关联即有罪”的假设,获得基于网络的功能相关基因命中列表。我们旨在开发一种方法,允许进行多变量基因评分和多个命中标签,以便在这种方法中扩展基因组筛选数据的分析。
我们提出了一种基于马尔可夫随机场的方法来实现我们的目标,并表明与目前使用的方法相比,我们的方法具有特定的优势,这为之前分析的数据以及我们自己的动机数据提供了新的见解。我们的方法在独立的模拟实验中还实现了最佳性能。我们考虑的实际数据应用包括生存分析和差异表达实验以及基于细胞的 RNA 干扰功能筛选。
我们提供论文中所有与结果相关的数据和代码。
sean.j.robinson@utu.fi 或 laurent.guyon@cea.fr。
补充数据可在 Bioinformatics 在线获取。