McLachlan G J, Bean R W, Jones L Ben-Tovim
Department of Mathematics, University of Queensland St Lucia, Brisbane 4072, Australia.
Bioinformatics. 2006 Jul 1;22(13):1608-15. doi: 10.1093/bioinformatics/btl148. Epub 2006 Apr 21.
An important problem in microarray experiments is the detection of genes that are differentially expressed in a given number of classes. We provide a straightforward and easily implemented method for estimating the posterior probability that an individual gene is null. The problem can be expressed in a two-component mixture framework, using an empirical Bayes approach. Current methods of implementing this approach either have some limitations due to the minimal assumptions made or with more specific assumptions are computationally intensive.
By converting to a z-score the value of the test statistic used to test the significance of each gene, we propose a simple two-component normal mixture that models adequately the distribution of this score. The usefulness of our approach is demonstrated on three real datasets.
微阵列实验中的一个重要问题是检测在给定数量的类别中差异表达的基因。我们提供了一种直接且易于实现的方法来估计单个基因无效的后验概率。该问题可以使用经验贝叶斯方法在双组分混合框架中表示。当前实现此方法的方式要么由于所作假设最少而存在一些局限性,要么在有更具体假设时计算量很大。
通过将用于检验每个基因显著性的检验统计量的值转换为z分数,我们提出了一种简单的双组分正态混合模型,该模型能充分模拟此分数的分布。我们的方法在三个真实数据集上得到了验证。