Institute of Medical Virology, Hospital of the Johann Wolfgang Goethe University, Frankfurt am Main, Germany.
Med Microbiol Immunol. 2011 Aug;200(3):193-202. doi: 10.1007/s00430-011-0191-4. Epub 2011 Mar 4.
The treatment of varicella-zoster virus (VZV) reactivation is based on nucleoside analogues acyclovir (ACV) and bromevinyldeoxyuridine (BVdU) and a phosphonic acid derivative (PFA). Drug-resistant mutants of 3 wild-type (WT) VZV strains were obtained by exposure of human retinal pigment epithelial (hRPE) cells inoculated with cell-free WT virus at increasing concentrations of ACV, BVdU, and PFA. In addition to single-drug resistance, a cross-resistance of isolates vs. ACV was observed for PFA-resistant strains. Single-nucleotide (nt) exchanges resulting in amino acid (aa) substitutions were observed within the DNA polymerase (ORF 28) and/or thymidine kinase (ORF 36) of 3 of 3 ACV-, 2 of 3 BVdU-, and 3 of 3 PFA-resistant strains. Interestingly, aa substitutions were also observed within the immediate-early regulatory protein and major transactivator IE 62 (ORF 62), and the envelope glycoprotein (g) I (ORF 67) of the BVdU-resistant mutant of strain PP. No aa substitutions were observed in the protein sequences of gene products encoded by ORF 5 (gK, a glycoprotein arranging exocytosis of viral-loaded vacuoles), ORF 14 (gC), ORF 31 (gB), ORF 37 (gH), ORF 47 (protein kinase, involved in major phosphorylating processes), ORF 60 (gL, important for syncytia forming of infected cells in combination with gH), ORF 63 (major transactivator, part of the tegument), and ORF 68 (gE, triggers fusion of viral loaded vacuoles with cell membranes by heterodimerizing with gI). Phenotypic analysis revealed a slow-growth phenotype and a formation of smaller plaques of resistant mutants. Future studies should prove the presence of those resistant mutants in herpes zoster patients and the potential consequences of their putative reduced fitness on the success of therapeutical interventions.
水痘带状疱疹病毒(VZV)再激活的治疗基于核苷类似物阿昔洛韦(ACV)和溴乙烯脱氧尿苷(BVdU)以及膦酸衍生物(PFA)。通过将无细胞 WT 病毒接种到接种了人视网膜色素上皮(hRPE)细胞的细胞中,在 ACV、BVdU 和 PFA 的浓度逐渐增加的情况下,获得了 3 种野生型(WT)VZV 株的耐药突变体。除了单药耐药外,还观察到对 PFA 耐药株的 ACV 交叉耐药。在 3 种 ACV 耐药株、3 种 BVdU 耐药株和 3 种 PFA 耐药株的 DNA 聚合酶(ORF 28)和/或胸苷激酶(ORF 36)中观察到导致氨基酸(aa)取代的单核苷酸(nt)交换。有趣的是,还观察到在即刻早期调节蛋白和主要转录激活因子 IE 62(ORF 62)以及 BVdU 耐药突变株 PP 的包膜糖蛋白(g)I(ORF 67)中的 aa 取代。在 ORF 5(gK,一种安排病毒负载空泡胞吐的糖蛋白)、ORF 14(gC)、ORF 31(gB)、ORF 37(gH)、ORF 47(蛋白激酶,参与主要磷酸化过程)、ORF 60(gL,与 gH 一起重要用于感染细胞的合胞体形成)、ORF 63(主要转录激活因子,衣壳的一部分)和 ORF 68(gE,通过与 gI 异二聚化触发病毒负载空泡与细胞膜融合)编码的基因产物的蛋白质序列中未观察到 aa 取代。表型分析显示出耐药突变体的生长缓慢表型和较小的蚀斑形成。未来的研究应证明那些耐药突变体在带状疱疹患者中的存在及其潜在的适应度降低对治疗干预成功的潜在后果。