Suppr超能文献

拟南芥 RD29A 和 RD29B 基因的非生物胁迫响应特性分析及转基因评估。

Characterization of abiotic stress-responsive Arabidopsis thaliana RD29A and RD29B genes and evaluation of transgenes.

机构信息

School of Natural Resources, University of Nebraska-Lincoln, 3310 Holdrege Street, Lincoln, NE 68583, USA.

出版信息

Planta. 2011 Jul;234(1):97-107. doi: 10.1007/s00425-011-1387-y. Epub 2011 Mar 4.

Abstract

Abiotic stresses have adverse effects on plant growth and productivity. The homologous RD29A and RD29B genes are exquisitely sensitive to various abiotic stressors. Therefore, RD29A and RD29B gene sequences have potential to confer abiotic stress resistance in crop species grown in arid and semi-arid regions. To our knowledge, no information on the physiological roles of the proteins encoded by RD29A and RD29B are available in the literature. To understand how these proteins function, we used reverse genetic approaches, including identifying rd29a and rd29b T-DNA knockout mutants, and examining the effects of complementing transgenes with the genes under control of their native promoters and chimeric genes with the native promoters swapped. Four binary vectors with the RD29A and RD29B promoters upstream of the cognate RD29A and RD29B cDNAs and as chimeric genes with noncognate promoters were used to transform rd29a and rd29b plants. Cold, drought, and salt induced both genes; the promoter of RD29A was found to be more responsive to drought and cold stresses, whereas the promoter of RD29B was highly responsive to salt stress. Morphological and physiological responses of rd29a and rd29b plants to salt stress were further investigated. Root growth, and photosynthetic properties declined significantly, while solute concentration (Ψπ), water use efficiency (WUE) and δ(13)C ratio increased under salt stress. Unexpectedly, the rd29a and rd29b knockout mutant lines maintained greater root growth, photosynthesis, and WUE under salt stress relative to control. We conclude that the RD29A and RD29B proteins are unlikely to serve directly as protective molecules.

摘要

非生物胁迫会对植物的生长和生产力产生不利影响。同源的 RD29A 和 RD29B 基因对各种非生物胁迫因子极为敏感。因此,RD29A 和 RD29B 基因序列有可能在干旱和半干旱地区种植的作物品种中赋予非生物胁迫抗性。据我们所知,文献中尚无关于 RD29A 和 RD29B 编码蛋白的生理作用的信息。为了了解这些蛋白的功能,我们使用了反向遗传学方法,包括鉴定 rd29a 和 rd29b T-DNA 敲除突变体,并研究了用基因的天然启动子和嵌合基因补充转基因的影响,这些嵌合基因的天然启动子被交换。使用四个带有 RD29A 和 RD29B 启动子的二元载体,该启动子位于同源 RD29A 和 RD29B cDNA 的上游,作为带有非同源启动子的嵌合基因,转化 rd29a 和 rd29b 植物。寒冷、干旱和盐胁迫均诱导这两个基因;发现 RD29A 的启动子对干旱和寒冷胁迫更敏感,而 RD29B 的启动子对盐胁迫高度敏感。还进一步研究了 rd29a 和 rd29b 植物对盐胁迫的形态和生理反应。根生长和光合性能显著下降,而溶质浓度(Ψπ)、水分利用效率(WUE)和 δ(13)C 比在盐胁迫下增加。出乎意料的是,与对照相比,rd29a 和 rd29b 敲除突变体系在盐胁迫下保持了更大的根生长、光合作用和 WUE。我们得出结论,RD29A 和 RD29B 蛋白不太可能直接作为保护分子发挥作用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验