Suppr超能文献

运用并行 S-ADAPT 的蒙特卡罗重要性抽样算法在基本和复杂机械模型中的性能和稳健性。

Performance and robustness of the Monte Carlo importance sampling algorithm using parallelized S-ADAPT for basic and complex mechanistic models.

机构信息

Ordway Research Institute, Albany, New York 12208, USA.

出版信息

AAPS J. 2011 Jun;13(2):212-26. doi: 10.1208/s12248-011-9258-9. Epub 2011 Mar 4.

Abstract

The Monte Carlo Parametric Expectation Maximization (MC-PEM) algorithm can approximate the true log-likelihood as precisely as needed and is efficiently parallelizable. Our objectives were to evaluate an importance sampling version of the MC-PEM algorithm for mechanistic models and to qualify the default estimation settings in SADAPT-TRAN. We assessed bias, imprecision and robustness of this algorithm in S-ADAPT for mechanistic models with up to 45 simultaneously estimated structural parameters, 14 differential equations, and 10 dependent variables (one drug concentration and nine pharmacodynamic effects). Simpler models comprising 15 parameters were estimated using three of the ten dependent variables. We set initial estimates to 0.1 or 10 times the true value and evaluated 30 bootstrap replicates with frequent or sparse sampling. Datasets comprised three dose levels with 16 subjects each. For simultaneous estimation of the full model, the ratio of estimated to true values for structural model parameters (median [5-95% percentile] over 45 parameters) was 1.01 [0.94-1.13] for means and 0.99 [0.68-1.39] for between-subject variances for frequent sampling and 1.02 [0.81-1.47] for means and 1.02 [0.47-2.56] for variances for sparse sampling. Imprecision was ≤25% for 43 of 45 means for frequent sampling. Bias and imprecision was well comparable for the full and simpler models. Parallelized estimation was 23-fold (6.9-fold) faster using 48 threads (eight threads) relative to one thread. The MC-PEM algorithm was robust and provided unbiased and adequately precise means and variances during simultaneous estimation of complex, mechanistic models in a 45 dimensional parameter space with rich or sparse data using poor initial estimates.

摘要

蒙特卡罗参数期望最大化 (MC-PEM) 算法可以根据需要精确逼近真实对数似然,并且能够有效地进行并行化。我们的目标是评估用于机械模型的重要性抽样版本的 MC-PEM 算法,并对 SADAPT-TRAN 中的默认估计设置进行资格认证。我们评估了在 S-ADAPT 中,这种算法在多达 45 个同时估计的结构参数、14 个微分方程和 10 个因变量(一个药物浓度和 9 个药效学效应)的机械模型中的偏差、不精确性和稳健性。使用十个因变量中的三个,我们对包含 15 个参数的更简单的模型进行了估计。我们将初始估计值设置为真实值的 0.1 或 10 倍,并使用频繁或稀疏采样评估了 30 次自举复制。数据集由三个剂量水平组成,每个剂量水平有 16 个受试者。对于完整模型的同时估计,结构模型参数的估计值与真实值之比(45 个参数的中位数 [5-95% 分位数])对于频繁采样,均值为 1.01 [0.94-1.13],个体间方差为 0.99 [0.68-1.39],稀疏采样的均值为 1.02 [0.81-1.47],个体间方差为 1.02 [0.47-2.56]。对于频繁采样,43 个均值的不精确性≤25%。对于完整和更简单的模型,偏差和不精确性具有可比性。使用 48 个线程(8 个线程)进行并行化估计比使用 1 个线程分别快 23 倍(6.9 倍)和 1.5 倍。MC-PEM 算法在使用较差的初始估计值,对具有丰富或稀疏数据的 45 维参数空间中的复杂机械模型进行同时估计时具有稳健性,并提供无偏和足够精确的均值和方差。

相似文献

8
RPEM: Randomized Monte Carlo parametric expectation maximization algorithm.RPEM:随机蒙特卡罗参数期望最大化算法。
CPT Pharmacometrics Syst Pharmacol. 2024 May;13(5):759-780. doi: 10.1002/psp4.13113. Epub 2024 Apr 15.
9
Performance of different population pharmacokinetic algorithms.不同群体药代动力学算法的性能。
Ther Drug Monit. 2011 Oct;33(5):583-91. doi: 10.1097/FTD.0b013e318232bc61.

引用本文的文献

本文引用的文献

7
A comprehensive model for the humoral coagulation network in humans.人类体液凝血网络的综合模型。
Clin Pharmacol Ther. 2009 Sep;86(3):290-8. doi: 10.1038/clpt.2009.87. Epub 2009 Jun 10.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验