Suppr超能文献

果蝇katanin 是一种微管解聚酶,可调节皮质微管正极相互作用和细胞迁移。

Drosophila katanin is a microtubule depolymerase that regulates cortical-microtubule plus-end interactions and cell migration.

机构信息

Department of Physiology and Biophysics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461, USA.

出版信息

Nat Cell Biol. 2011 Apr;13(4):361-70. doi: 10.1038/ncb2206. Epub 2011 Mar 6.

Abstract

Regulation of microtubule dynamics at the cell cortex is important for cell motility, morphogenesis and division. Here we show that the Drosophila katanin Dm-Kat60 functions to generate a dynamic cortical-microtubule interface in interphase cells. Dm-Kat60 concentrates at the cell cortex of S2 Drosophila cells during interphase, where it suppresses the polymerization of microtubule plus-ends, thereby preventing the formation of aberrantly dense cortical arrays. Dm-Kat60 also localizes at the leading edge of migratory D17 Drosophila cells and negatively regulates multiple parameters of their motility. Finally, in vitro, Dm-Kat60 severs and depolymerizes microtubules from their ends. On the basis of these data, we propose that Dm-Kat60 removes tubulin from microtubule lattice or microtubule ends that contact specific cortical sites to prevent stable and/or lateral attachments. The asymmetric distribution of such an activity could help generate regional variations in microtubule behaviours involved in cell migration.

摘要

细胞皮层处微管动力学的调节对于细胞运动、形态发生和分裂很重要。在这里,我们发现果蝇katanin Dm-Kat60 可以在间期细胞中产生动态的皮层-微管界面。在间期的 S2 果蝇细胞中,Dm-Kat60 集中在细胞膜皮层上,抑制微管正端的聚合,从而防止异常密集的皮层排列的形成。Dm-Kat60 还定位于迁移的 D17 果蝇细胞的前缘,并负调控它们运动的多个参数。最后,在体外,Dm-Kat60 从微管末端切割和去聚合微管。基于这些数据,我们提出 Dm-Kat60 从与特定皮层位点接触的微管晶格或微管末端去除微管蛋白,以防止稳定和/或横向附着。这种活性的不对称分布有助于产生参与细胞迁移的微管行为的区域变化。

相似文献

2
The non-catalytic domains of Drosophila katanin regulate its abundance and microtubule-disassembly activity.
PLoS One. 2015 Apr 17;10(4):e0123912. doi: 10.1371/journal.pone.0123912. eCollection 2015.
3
Drosophila katanin-60 depolymerizes and severs at microtubule defects.
Biophys J. 2011 May 18;100(10):2440-9. doi: 10.1016/j.bpj.2011.03.062.
4
Patronin regulates the microtubule network by protecting microtubule minus ends.
Cell. 2010 Oct 15;143(2):263-74. doi: 10.1016/j.cell.2010.09.022.
5
Microtubules cut loose at the cell cortex.
Fly (Austin). 2012 Jan-Mar;6(1):12-5. doi: 10.4161/fly.18306. Epub 2012 Jan 1.
6
Three microtubule severing enzymes contribute to the "Pacman-flux" machinery that moves chromosomes.
J Cell Biol. 2007 Apr 23;177(2):231-42. doi: 10.1083/jcb.200612011.
7
Identification of katanin, an ATPase that severs and disassembles stable microtubules.
Cell. 1993 Nov 5;75(3):419-29. doi: 10.1016/0092-8674(93)90377-3.
9
Augmin Antagonizes Katanin at Microtubule Crossovers to Control the Dynamic Organization of Plant Cortical Arrays.
Curr Biol. 2018 Apr 23;28(8):1311-1317.e3. doi: 10.1016/j.cub.2018.03.007. Epub 2018 Apr 12.

引用本文的文献

2
The Cullin3-Ring E3 ubiquitin ligase complex and USP14 regulate spastin-mediated microtubule severing and promotion of neurite outgrowth.
Neural Regen Res. 2026 Apr 1;21(4):1641-1651. doi: 10.4103/NRR.NRR-D-25-00037. Epub 2025 Jun 20.
3
Tubulin glutamylation regulates axon guidance via the selective tuning of microtubule-severing enzymes.
EMBO J. 2025 Jan;44(1):107-140. doi: 10.1038/s44318-024-00307-x. Epub 2024 Nov 29.
7
A Tale of 12 Tails: Katanin Severing Activity Affected by Carboxy-Terminal Tail Sequences.
Biomolecules. 2023 Mar 30;13(4):620. doi: 10.3390/biom13040620.
8
Tubulin Post-Translational Modifications: The Elusive Roles of Acetylation.
Biology (Basel). 2023 Apr 6;12(4):561. doi: 10.3390/biology12040561.
9
The Mammalian Family of Katanin Microtubule-Severing Enzymes.
Front Cell Dev Biol. 2021 Aug 3;9:692040. doi: 10.3389/fcell.2021.692040. eCollection 2021.
10
Robustness of the microtubule network self-organization in epithelia.
Elife. 2021 Feb 1;10:e59529. doi: 10.7554/eLife.59529.

本文引用的文献

2
In vitro reconstitution of the functional interplay between MCAK and EB3 at microtubule plus ends.
Curr Biol. 2010 Oct 12;20(19):1717-22. doi: 10.1016/j.cub.2010.08.020. Epub 2010 Sep 16.
3
KL1 is a novel microtubule severing enzyme that regulates mitotic spindle architecture.
Cell Cycle. 2010 Jun 15;9(12):2403-11. doi: 10.4161/cc.9.12.11916.
4
Clasp-mediated microtubule bundling regulates persistent motility and contact repulsion in Drosophila macrophages in vivo.
J Cell Biol. 2010 May 17;189(4):681-9. doi: 10.1083/jcb.200912134. Epub 2010 May 10.
5
Microtubule-severing enzymes.
Curr Opin Cell Biol. 2010 Feb;22(1):96-103. doi: 10.1016/j.ceb.2009.11.001. Epub 2009 Dec 5.
6
The Drosophila kinesin-13, KLP59D, impacts Pacman- and Flux-based chromosome movement.
Mol Biol Cell. 2009 Nov;20(22):4696-705. doi: 10.1091/mbc.e09-07-0557. Epub 2009 Sep 30.
7
Regulation of microtubule dynamic instability.
Biochem Soc Trans. 2009 Oct;37(Pt 5):1007-13. doi: 10.1042/BST0371007.
8
Microtubule-dependent cell morphogenesis in the fission yeast.
Trends Cell Biol. 2009 Sep;19(9):447-54. doi: 10.1016/j.tcb.2009.06.003. Epub 2009 Aug 25.
9
High-throughput generation of tagged stable cell lines for proteomic analysis.
Proteomics. 2009 May;9(10):2888-91. doi: 10.1002/pmic.200800873.
10
Spindle orientation during asymmetric cell division.
Nat Cell Biol. 2009 Apr;11(4):365-74. doi: 10.1038/ncb0409-365.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验