Suppr超能文献

在随机临床试验中平衡多个基线特征。

Balancing multiple baseline characteristics in randomized clinical trials.

机构信息

Senior Statistician, Genentech Inc, South San Francisco, CA 94080, USA.

出版信息

Contemp Clin Trials. 2011 Jul;32(4):547-50. doi: 10.1016/j.cct.2011.03.004. Epub 2011 Mar 5.

Abstract

It is of vital importance to the success of a randomized clinical trial to maintain the balance of baseline characteristics (covariates) that could potentially confound the outcomes of the trial. Various randomization methods have been proposed to increase the likelihood of having balanced covariates at the end of a trial, most of which only apply to categorical covariates. An optimization approach to maintaining the balance of multiple covariates in randomized clinical trials is proposed, which is applicable to both continuous and categorical covariates and allows the covariates to be ranked according to their clinical importance as perceived by the clinical trial practitioners. Simulation results show that the proposed algorithm significantly outperforms the standard randomization approach via flipping an unbiased coin. The proposed randomization method can be easily implemented and generalized for cases where there are multiple treatment arms with equal or unequal randomization probabilities.

摘要

保持潜在混杂试验结果的基线特征(协变量)的平衡对于随机临床试验的成功至关重要。已经提出了各种随机化方法来增加试验结束时具有平衡协变量的可能性,其中大多数方法仅适用于分类协变量。本文提出了一种优化方法,用于维持随机临床试验中多个协变量的平衡,该方法适用于连续和分类协变量,并允许根据临床试验从业者认为的临床重要性对协变量进行排序。仿真结果表明,与通过抛硬币实现的标准随机化方法相比,所提出的算法具有显著的优势。所提出的随机化方法可以很容易地实现和推广到具有相等或不相等随机化概率的多个治疗臂的情况。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验