Suppr超能文献

对照临床试验中的动态平衡随机化

Dynamic balancing randomization in controlled clinical trials.

作者信息

Heritier Stephane, Gebski Val, Pillai Avinesh

机构信息

National Health and Medical Research Council (NHMRC) Clinical Trials Centre, University of Sydney, NSW, Australia.

出版信息

Stat Med. 2005 Dec 30;24(24):3729-41. doi: 10.1002/sim.2421.

Abstract

In the design of randomized clinical trials, balancing of treatment allocation across important prognostic factors (strata) improves the efficiency of the final comparisons. Whilst randomization methods exist which attempt to balance treatments across the strata (permuted blocks, minimization, biased coin), these approaches assign equal importance for all the strata. Dynamic balancing randomization (DBR) is a tree-based method proposed by Signorini et al. allowing different levels of imbalance in different strata which ensures a balance for each level of prognostic risk factors (conditional balance) whilst at the same time preserving randomness. We present a simple modification to the original approach to maintain a marginal balance over important strata and examine the properties of this modification. Two important measures of performance are used to provide comparisons between the approaches: a loss function, which can be interpreted as the squared norm of the imbalance vector, and a forcing index which conveys the degree of randomness. A comparison of DBR with minimization and a biased coin design is carried out by simulation on two simulated trials.

摘要

在随机临床试验的设计中,使治疗分配在重要的预后因素(分层)之间达到平衡可提高最终比较的效率。虽然存在一些随机化方法试图在各分层之间平衡治疗(排列块法、最小化法、偏性硬币法),但这些方法对所有分层赋予同等重要性。动态平衡随机化(DBR)是由西尼奥里尼等人提出的一种基于树的方法,它允许不同分层存在不同程度的不平衡,既能确保每个预后风险因素水平达到平衡(条件平衡),同时又能保持随机性。我们对原始方法进行了一项简单修改,以在重要分层上保持边际平衡,并研究这种修改的性质。使用两个重要的性能指标来对这些方法进行比较:一个损失函数,可解释为不平衡向量的平方范数;以及一个强制指数,用于传达随机程度。通过对两项模拟试验进行模拟,将DBR与最小化法和偏性硬币设计进行比较。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验