Suppr超能文献

基于稀疏观测的高斯过程回归在元分析神经影像学推断中的应用。

Using Gaussian-process regression for meta-analytic neuroimaging inference based on sparse observations.

机构信息

FMRIB Centre, University of Oxford, Oxford, UK.

出版信息

IEEE Trans Med Imaging. 2011 Jul;30(7):1401-16. doi: 10.1109/TMI.2011.2122341. Epub 2011 Mar 3.

Abstract

The purpose of neuroimaging meta-analysis is to localize the brain regions that are activated consistently in response to a certain intervention. As a commonly used technique, current coordinate-based meta-analyses (CBMA) of neuroimaging studies utilize relatively sparse information from published studies, typically only using (x,y,z) coordinates of the activation peaks. Such CBMA methods have several limitations. First, there is no way to jointly incorporate deactivation information when available, which has been shown to result in an inaccurate statistic image when assessing a difference contrast. Second, the scale of a kernel reflecting spatial uncertainty must be set without taking the effect size (e.g., Z-stat) into account. To address these problems, we employ Gaussian-process regression (GPR), explicitly estimating the unobserved statistic image given the sparse peak activation "coordinate" and "standardized effect-size estimate" data. In particular, our model allows estimation of effect size at each voxel, something existing CBMA methods cannot produce. Our results show that GPR outperforms existing CBMA techniques and is capable of more accurately reproducing the (usually unavailable) full-image analysis results.

摘要

神经影像学荟萃分析的目的是定位在特定干预下一致激活的大脑区域。作为一种常用的技术,目前基于坐标的神经影像学研究荟萃分析(CBMA)利用了发表研究中相对稀疏的信息,通常只使用激活峰的(x,y,z)坐标。这种 CBMA 方法有几个局限性。首先,当可用时,没有办法联合纳入去激活信息,当评估差异对比时,这会导致不准确的统计图像。其次,反映空间不确定性的核的规模必须在不考虑效果大小(例如 Z 统计量)的情况下设置。为了解决这些问题,我们采用了高斯过程回归(GPR),根据稀疏的峰激活“坐标”和“标准化效果大小估计”数据,明确估计未观测到的统计图像。具体来说,我们的模型允许在每个体素上估计效果大小,这是现有 CBMA 方法无法生成的。我们的结果表明,GPR 优于现有的 CBMA 技术,能够更准确地再现(通常不可用的)全图像分析结果。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验