Montagna Silvia, Wager Tor, Barrett Lisa Feldman, Johnson Timothy D, Nichols Thomas E
School of Mathematics, Statistics and Actuarial Science, University of Kent, Canterbury CT2 7FS, UK.
Department of Psychology and Neuroscience, University of Colorado at Boulder, Boulder, Colorado 80309, U.S.A.
Biometrics. 2018 Mar;74(1):342-353. doi: 10.1111/biom.12713. Epub 2017 May 12.
Now over 20 years old, functional MRI (fMRI) has a large and growing literature that is best synthesised with meta-analytic tools. As most authors do not share image data, only the peak activation coordinates (foci) reported in the article are available for Coordinate-Based Meta-Analysis (CBMA). Neuroimaging meta-analysis is used to (i) identify areas of consistent activation; and (ii) build a predictive model of task type or cognitive process for new studies (reverse inference). To simultaneously address these aims, we propose a Bayesian point process hierarchical model for CBMA. We model the foci from each study as a doubly stochastic Poisson process, where the study-specific log intensity function is characterized as a linear combination of a high-dimensional basis set. A sparse representation of the intensities is guaranteed through latent factor modeling of the basis coefficients. Within our framework, it is also possible to account for the effect of study-level covariates (meta-regression), significantly expanding the capabilities of the current neuroimaging meta-analysis methods available. We apply our methodology to synthetic data and neuroimaging meta-analysis datasets.
功能磁共振成像(fMRI)如今已有20多年的历史,相关文献数量众多且不断增加,使用元分析工具能最好地综合这些文献。由于大多数作者不共享图像数据,基于坐标的元分析(CBMA)仅可使用文章中报告的峰值激活坐标(焦点)。神经影像元分析用于:(i)识别一致激活的区域;以及(ii)为新研究建立任务类型或认知过程的预测模型(反向推理)。为了同时实现这些目标,我们提出了一种用于CBMA的贝叶斯点过程分层模型。我们将每项研究中的焦点建模为双重随机泊松过程,其中特定于研究的对数强度函数被表征为高维基集的线性组合。通过对基系数进行潜在因子建模,可以保证强度的稀疏表示。在我们的框架内,还能够考虑研究水平协变量的影响(元回归),这显著扩展了当前可用神经影像元分析方法的能力。我们将我们的方法应用于合成数据和神经影像元分析数据集。