Suppr超能文献

基于坐标的荟萃分析数据的空间贝叶斯潜在因子回归建模

Spatial Bayesian latent factor regression modeling of coordinate-based meta-analysis data.

作者信息

Montagna Silvia, Wager Tor, Barrett Lisa Feldman, Johnson Timothy D, Nichols Thomas E

机构信息

School of Mathematics, Statistics and Actuarial Science, University of Kent, Canterbury CT2 7FS, UK.

Department of Psychology and Neuroscience, University of Colorado at Boulder, Boulder, Colorado 80309, U.S.A.

出版信息

Biometrics. 2018 Mar;74(1):342-353. doi: 10.1111/biom.12713. Epub 2017 May 12.

Abstract

Now over 20 years old, functional MRI (fMRI) has a large and growing literature that is best synthesised with meta-analytic tools. As most authors do not share image data, only the peak activation coordinates (foci) reported in the article are available for Coordinate-Based Meta-Analysis (CBMA). Neuroimaging meta-analysis is used to (i) identify areas of consistent activation; and (ii) build a predictive model of task type or cognitive process for new studies (reverse inference). To simultaneously address these aims, we propose a Bayesian point process hierarchical model for CBMA. We model the foci from each study as a doubly stochastic Poisson process, where the study-specific log intensity function is characterized as a linear combination of a high-dimensional basis set. A sparse representation of the intensities is guaranteed through latent factor modeling of the basis coefficients. Within our framework, it is also possible to account for the effect of study-level covariates (meta-regression), significantly expanding the capabilities of the current neuroimaging meta-analysis methods available. We apply our methodology to synthetic data and neuroimaging meta-analysis datasets.

摘要

功能磁共振成像(fMRI)如今已有20多年的历史,相关文献数量众多且不断增加,使用元分析工具能最好地综合这些文献。由于大多数作者不共享图像数据,基于坐标的元分析(CBMA)仅可使用文章中报告的峰值激活坐标(焦点)。神经影像元分析用于:(i)识别一致激活的区域;以及(ii)为新研究建立任务类型或认知过程的预测模型(反向推理)。为了同时实现这些目标,我们提出了一种用于CBMA的贝叶斯点过程分层模型。我们将每项研究中的焦点建模为双重随机泊松过程,其中特定于研究的对数强度函数被表征为高维基集的线性组合。通过对基系数进行潜在因子建模,可以保证强度的稀疏表示。在我们的框架内,还能够考虑研究水平协变量的影响(元回归),这显著扩展了当前可用神经影像元分析方法的能力。我们将我们的方法应用于合成数据和神经影像元分析数据集。

相似文献

1
Spatial Bayesian latent factor regression modeling of coordinate-based meta-analysis data.
Biometrics. 2018 Mar;74(1):342-353. doi: 10.1111/biom.12713. Epub 2017 May 12.
2
Neuroimaging meta regression for coordinate based meta analysis data with a spatial model.
Biostatistics. 2024 Oct 1;25(4):1210-1232. doi: 10.1093/biostatistics/kxae024.
3
Using Gaussian-process regression for meta-analytic neuroimaging inference based on sparse observations.
IEEE Trans Med Imaging. 2011 Jul;30(7):1401-16. doi: 10.1109/TMI.2011.2122341. Epub 2011 Mar 3.
4
Meta-analysis of neuroimaging data: a comparison of image-based and coordinate-based pooling of studies.
Neuroimage. 2009 Apr 15;45(3):810-23. doi: 10.1016/j.neuroimage.2008.12.039. Epub 2008 Dec 31.
5
BrainMap VBM: An environment for structural meta-analysis.
Hum Brain Mapp. 2018 Aug;39(8):3308-3325. doi: 10.1002/hbm.24078. Epub 2018 May 2.
6
Meta Analysis of Functional Neuroimaging Data via Bayesian Spatial Point Processes.
J Am Stat Assoc. 2011 Mar 1;106(493):124-134. doi: 10.1198/jasa.2011.ap09735.
7
Group-representative functional network estimation from multi-subject fMRI data via MRF-based image segmentation.
Comput Methods Programs Biomed. 2019 Oct;179:104976. doi: 10.1016/j.cmpb.2019.07.004. Epub 2019 Jul 19.
8
A BAYESIAN HIERARCHICAL SPATIAL POINT PROCESS MODEL FOR MULTI-TYPE NEUROIMAGING META-ANALYSIS.
Ann Appl Stat. 2014 Sep;8(3):1800-1824. doi: 10.1214/14-aoas757.
9
A spatial Bayesian latent factor model for image-on-image regression.
Biometrics. 2022 Mar;78(1):72-84. doi: 10.1111/biom.13420. Epub 2021 Jan 13.
10
Coordinate based meta-analysis of functional neuroimaging data; false discovery control and diagnostics.
PLoS One. 2013 Jul 29;8(7):e70143. doi: 10.1371/journal.pone.0070143. Print 2013.

引用本文的文献

1
Neuroimaging meta regression for coordinate based meta analysis data with a spatial model.
Biostatistics. 2024 Oct 1;25(4):1210-1232. doi: 10.1093/biostatistics/kxae024.
2
Bayesian Spatial Blind Source Separation via the Thresholded Gaussian Process.
J Am Stat Assoc. 2024;119(545):422-433. doi: 10.1080/01621459.2022.2123336. Epub 2022 Nov 28.
4
A Cortical Surface-Based Meta-Analysis of Human Reasoning.
Cereb Cortex. 2021 Oct 22;31(12):5497-5510. doi: 10.1093/cercor/bhab174.
5
A spatial Bayesian latent factor model for image-on-image regression.
Biometrics. 2022 Mar;78(1):72-84. doi: 10.1111/biom.13420. Epub 2021 Jan 13.
6
Estimating the prevalence of missing experiments in a neuroimaging meta-analysis.
Res Synth Methods. 2020 Nov;11(6):866-883. doi: 10.1002/jrsm.1448. Epub 2020 Sep 27.
7
Finding specificity in structural brain alterations through Bayesian reverse inference.
Hum Brain Mapp. 2020 Oct 15;41(15):4155-4172. doi: 10.1002/hbm.25105. Epub 2020 Aug 23.
8
Bayesian log-Gaussian Cox process regression: with applications to meta-analysis of neuroimaging working memory studies.
J R Stat Soc Ser C Appl Stat. 2019 Jan;68(1):217-234. doi: 10.1111/rssc.12295. Epub 2018 Jun 29.
9
A Bayesian Approach for the Use of Athlete Performance Data Within Anti-doping.
Front Physiol. 2018 Jul 19;9:884. doi: 10.3389/fphys.2018.00884. eCollection 2018.
10
The coordinate-based meta-analysis of neuroimaging data.
Stat Sci. 2017;32(4):580-599. doi: 10.1214/17-STS624. Epub 2017 Nov 28.

本文引用的文献

1
The coordinate-based meta-analysis of neuroimaging data.
Stat Sci. 2017;32(4):580-599. doi: 10.1214/17-STS624. Epub 2017 Nov 28.
2
A Bayesian model of category-specific emotional brain responses.
PLoS Comput Biol. 2015 Apr 8;11(4):e1004066. doi: 10.1371/journal.pcbi.1004066. eCollection 2015 Apr.
3
A BAYESIAN HIERARCHICAL SPATIAL POINT PROCESS MODEL FOR MULTI-TYPE NEUROIMAGING META-ANALYSIS.
Ann Appl Stat. 2014 Sep;8(3):1800-1824. doi: 10.1214/14-aoas757.
4
Functional Specialization and Flexibility in Human Association Cortex.
Cereb Cortex. 2015 Oct;25(10):3654-72. doi: 10.1093/cercor/bhu217. Epub 2014 Sep 23.
6
Bayesian latent factor regression for functional and longitudinal data.
Biometrics. 2012 Dec;68(4):1064-73. doi: 10.1111/j.1541-0420.2012.01788.x. Epub 2012 Sep 24.
7
The secret lives of experiments: methods reporting in the fMRI literature.
Neuroimage. 2012 Oct 15;63(1):289-300. doi: 10.1016/j.neuroimage.2012.07.004. Epub 2012 Jul 10.
8
Meta Analysis of Functional Neuroimaging Data via Bayesian Spatial Point Processes.
J Am Stat Assoc. 2011 Mar 1;106(493):124-134. doi: 10.1198/jasa.2011.ap09735.
9
Large-scale automated synthesis of human functional neuroimaging data.
Nat Methods. 2011 Jun 26;8(8):665-70. doi: 10.1038/nmeth.1635.
10
A unified statistical approach for determining significant signals in images of cerebral activation.
Hum Brain Mapp. 1996;4(1):58-73. doi: 10.1002/(SICI)1097-0193(1996)4:1<58::AID-HBM4>3.0.CO;2-O.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验