Eickhoff Simon B, Laird Angela R, Grefkes Christian, Wang Ling E, Zilles Karl, Fox Peter T
Institut for Neuroscience and Biophysics-Medicine (INB 3), Research Center Jülich, Jülich, Germany.
Hum Brain Mapp. 2009 Sep;30(9):2907-26. doi: 10.1002/hbm.20718.
A widely used technique for coordinate-based meta-analyses of neuroimaging data is activation likelihood estimation (ALE). ALE assesses the overlap between foci based on modeling them as probability distributions centered at the respective coordinates. In this Human Brain Project/Neuroinformatics research, the authors present a revised ALE algorithm addressing drawbacks associated with former implementations. The first change pertains to the size of the probability distributions, which had to be specified by the used. To provide a more principled solution, the authors analyzed fMRI data of 21 subjects, each normalized into MNI space using nine different approaches. This analysis provided quantitative estimates of between-subject and between-template variability for 16 functionally defined regions, which were then used to explicitly model the spatial uncertainty associated with each reported coordinate. Secondly, instead of testing for an above-chance clustering between foci, the revised algorithm assesses above-chance clustering between experiments. The spatial relationship between foci in a given experiment is now assumed to be fixed and ALE results are assessed against a null-distribution of random spatial association between experiments. Critically, this modification entails a change from fixed- to random-effects inference in ALE analysis allowing generalization of the results to the entire population of studies analyzed. By comparative analysis of real and simulated data, the authors showed that the revised ALE-algorithm overcomes conceptual problems of former meta-analyses and increases the specificity of the ensuing results without loosing the sensitivity of the original approach. It may thus provide a methodologically improved tool for coordinate-based meta-analyses on functional imaging data.
一种广泛用于神经影像数据基于坐标的元分析技术是激活似然估计(ALE)。ALE通过将焦点建模为以各自坐标为中心的概率分布来评估焦点之间的重叠。在这项人类大脑计划/神经信息学研究中,作者提出了一种修订后的ALE算法,以解决与先前实现相关的缺点。第一个变化涉及概率分布的大小,此前该大小必须由使用者指定。为了提供一个更有原则的解决方案,作者分析了21名受试者的功能磁共振成像(fMRI)数据,每个受试者使用九种不同方法归一化到蒙特利尔神经研究所(MNI)空间。该分析提供了16个功能定义区域的受试者间和模板间变异性的定量估计,然后用于明确模拟与每个报告坐标相关的空间不确定性。其次,修订后的算法不是测试焦点之间高于机遇水平的聚类,而是评估实验之间高于机遇水平的聚类。现在假定给定实验中焦点之间的空间关系是固定的,并且ALE结果是根据实验之间随机空间关联的零分布进行评估的。至关重要的是,这种修改使得ALE分析从固定效应推断变为随机效应推断,从而允许将结果推广到所分析的整个研究群体。通过对真实数据和模拟数据的比较分析,作者表明修订后的ALE算法克服了先前元分析的概念问题,并在不损失原始方法敏感性的情况下提高了后续结果的特异性。因此,它可能为基于坐标的功能成像数据元分析提供一种方法上改进的工具。