Suppr超能文献

一种使用多变量非侵入性测量来筛查阻塞性睡眠呼吸暂停的方法。

A method to screen obstructive sleep apnea using multi-variable non-intrusive measurements.

机构信息

School of Information Technology and Electrical Engineering, University of Queensland, St Lucia, Brisbane, Australia.

出版信息

Physiol Meas. 2011 Apr;32(4):445-65. doi: 10.1088/0967-3334/32/4/006. Epub 2011 Mar 8.

Abstract

Obstructive sleep apnea (OSA) is a serious sleep disorder. The current standard OSA diagnosis method is polysomnography (PSG) testing. PSG requires an overnight hospital stay while physically connected to 10-15 channels of measurement. PSG is expensive, inconvenient and requires the extensive involvement of a sleep technologist. As such, it is not suitable for community screening. OSA is a widespread disease and more than 80% of sufferers remain undiagnosed. Simplified, unattended and cheap OSA screening methods are urgently needed. Snoring is commonly associated with OSA but is not fully utilized in clinical diagnosis. Snoring contains pseudo-periodic packets of energy that produce characteristic vibrating sounds familiar to humans. In this paper, we propose a multi-feature vector that represents pitch information, formant information, a measure of periodic structure existence in snore episodes and the neck circumference of the subject to characterize OSA condition. Snore features were estimated from snore signals recorded in a sleep laboratory. The multi-feature vector was applied to a neural network for OSA/non-OSA classification and K-fold cross-validated using a random sub-sampling technique. We also propose a simple method to remove a specific class of background interference. Our method resulted in a sensitivity of 91 ± 6% and a specificity of 89 ± 5% for test data for AHI(THRESHOLD) = 15 for a database consisting of 51 subjects. This method has the potential as a non-intrusive, unattended technique to screen OSA using snore sound as the primary signal.

摘要

阻塞性睡眠呼吸暂停(OSA)是一种严重的睡眠障碍。目前的 OSA 标准诊断方法是多导睡眠图(PSG)测试。PSG 需要在医院过夜,并与 10-15 个测量通道物理连接。PSG 昂贵、不方便,需要睡眠技术人员的广泛参与。因此,它不适合社区筛查。OSA 是一种广泛存在的疾病,超过 80%的患者未被诊断。因此,迫切需要简化、无人值守和廉价的 OSA 筛查方法。打鼾通常与 OSA 相关,但在临床诊断中并未充分利用。打鼾包含伪周期性的能量包,产生人类熟悉的特征振动声音。在本文中,我们提出了一个多特征向量,用于表示音调信息、共振峰信息、打鼾事件中周期性结构存在的度量以及受试者的颈围,以表征 OSA 状况。打鼾特征是从睡眠实验室记录的打鼾信号中估计的。多特征向量应用于神经网络进行 OSA/非 OSA 分类,并使用随机子采样技术进行 K 折交叉验证。我们还提出了一种简单的方法来去除特定类别的背景干扰。我们的方法在由 51 名受试者组成的数据库中,对于 AHI(THRESHOLD) = 15 的测试数据,灵敏度为 91±6%,特异性为 89±5%。这种方法有可能成为一种非侵入性、无人值守的技术,通过使用打鼾声作为主要信号来筛查 OSA。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验