Suppr超能文献

虚拟切片的定量分析:基于内容的图像信息分析方法。

Quantification of virtual slides: Approaches to analysis of content-based image information.

作者信息

Kayser Klaus

机构信息

UICC-TPCC, Institute of Pathology, Charite, Charite Platz, D-10118 Berlin, Germany.

出版信息

J Pathol Inform. 2011 Jan 7;2:2. doi: 10.4103/2153-3539.74945.

Abstract

Virtual microscopy, which is the diagnostic work on completely digitized histological and cytological slides as well as blood smears, is at the stage to be implemented in routine diagnostic surgical pathology (tissue-based diagnosis) in the near future, once it has been accepted by the US Food and Drug Administration. The principle of content-based image information, its mandatory prerequisites to obtain reproducible and stable image information as well as the different compartments that contribute to image information are described in detail. Automated extraction of content-based image information requires shading correction, constant maximum of grey values, and standardized grey value histograms. The different compartments to evaluate image information include objects, structure, and texture. Identification of objects and derived structure depend on segmentation accuracy and applied procedures; textures contain pixel-based image information only. All together, these image compartments posses the discrimination power to distinguish between object space and background, and, in addition, to reproducibly define regions of interest (ROIs). ROIs are image areas which display the information that is of preferable interest to the viewing pathologist. They contribute to the derived diagnosis to a higher level when compared with other image areas. The implementation of content-based image information algorithms to be applied for predictive tissue-based diagnoses is described in detail.

摘要

虚拟显微镜检查是对完全数字化的组织学和细胞学切片以及血液涂片进行诊断工作。一旦获得美国食品药品监督管理局的认可,它将在不久的将来应用于常规诊断手术病理学(基于组织的诊断)。本文详细描述了基于内容的图像信息原理、获取可重复和稳定图像信息的必要前提条件以及构成图像信息的不同部分。基于内容的图像信息自动提取需要进行阴影校正、保持灰度值的恒定最大值以及标准化灰度值直方图。评估图像信息的不同部分包括对象、结构和纹理。对象和派生结构的识别取决于分割精度和所应用的程序;纹理仅包含基于像素的图像信息。这些图像部分共同具有区分对象空间和背景的辨别能力,此外,还能够可重复地定义感兴趣区域(ROI)。ROI是显示观看病理学家更感兴趣信息的图像区域。与其他图像区域相比,它们对诊断结果的贡献更大。本文详细描述了用于基于组织的预测性诊断的基于内容的图像信息算法的实施情况。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c88b/3046376/4fa92b55b890/JPI-2-2-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验