Drug-Safety Research and Development, Pfizer Inc., San Diego, California, United States of America.
Tumor Morphology Group, Oncology Research and Development, Pfizer Inc., San Diego, California, United States of America.
PLoS One. 2021 Sep 27;16(9):e0245638. doi: 10.1371/journal.pone.0245638. eCollection 2021.
Immunohistochemistry (IHC) assays play a central role in evaluating biomarker expression in tissue sections for diagnostic and research applications. Manual scoring of IHC images, which is the current standard of practice, is known to have several shortcomings in terms of reproducibility and scalability to large scale studies. Here, by using a digital image analysis-based approach, we introduce a new metric called the pixelwise H-score (pix H-score) that quantifies biomarker expression from whole-slide scanned IHC images. The pix H-score is an unsupervised algorithm that only requires the specification of intensity thresholds for the biomarker and the nuclear-counterstain channels. We present the detailed implementation of the pix H-score in two different whole-slide image analysis software packages Visiopharm and HALO. We consider three biomarkers P-cadherin, PD-L1, and 5T4, and show how the pix H-score exhibits tight concordance to multiple orthogonal measurements of biomarker abundance such as the biomarker mRNA transcript and the pathologist H-score. We also compare the pix H-score to existing automated image analysis algorithms and demonstrate that the pix H-score provides either comparable or significantly better performance over these methodologies. We also present results of an empirical resampling approach to assess the performance of the pix H-score in estimating biomarker abundance from select regions within the tumor tissue relative to the whole tumor resection. We anticipate that the new metric will be broadly applicable to quantify biomarker expression from a wide variety of IHC images. Moreover, these results underscore the benefit of digital image analysis-based approaches which offer an objective, reproducible, and highly scalable strategy to quantitatively analyze IHC images.
免疫组织化学(IHC)检测在评估组织切片中的生物标志物表达方面发挥着核心作用,可用于诊断和研究应用。目前的标准实践是手动评分 IHC 图像,但这种方法在可重复性和可扩展性方面存在一些缺点,无法用于大规模研究。在这里,我们使用基于数字图像分析的方法,引入了一种新的度量标准,即像素 H 评分(pix H-score),用于从全切片扫描的 IHC 图像中量化生物标志物的表达。pix H-score 是一种无需监督的算法,仅需要指定生物标志物和核对照染色通道的强度阈值。我们在两种不同的全切片图像分析软件包 Visiopharm 和 HALO 中展示了 pix H-score 的详细实现。我们考虑了三种生物标志物 P-钙黏蛋白、PD-L1 和 5T4,并展示了 pix H-score 如何与生物标志物 mRNA 转录本和病理学家 H 评分等多种生物标志物丰度的正交测量结果紧密一致。我们还将 pix H-score 与现有的自动图像分析算法进行了比较,并证明了 pix H-score 在这些方法中提供了可比或明显更好的性能。我们还介绍了一种经验重采样方法的结果,以评估 pix H-score 在从肿瘤组织的选定区域估计生物标志物丰度方面相对于整个肿瘤切除的性能。我们预计,新的度量标准将广泛适用于从各种 IHC 图像中定量评估生物标志物的表达。此外,这些结果强调了基于数字图像分析的方法的优势,该方法提供了一种客观、可重复且高度可扩展的策略,用于定量分析 IHC 图像。