Suppr超能文献

基于组织的诊断中的图像标准(诊断外科病理学)。

Image standards in tissue-based diagnosis (diagnostic surgical pathology).

机构信息

UICC-TPCC, Institute of Pathology, Charite, Berlin, Germany.

出版信息

Diagn Pathol. 2008 Apr 18;3:17. doi: 10.1186/1746-1596-3-17.

Abstract

BACKGROUND

Progress in automated image analysis, virtual microscopy, hospital information systems, and interdisciplinary data exchange require image standards to be applied in tissue-based diagnosis.

AIMS

To describe the theoretical background, practical experiences and comparable solutions in other medical fields to promote image standards applicable for diagnostic pathology. THEORY AND EXPERIENCES: Images used in tissue-based diagnosis present with pathology-specific characteristics. It seems appropriate to discuss their characteristics and potential standardization in relation to the levels of hierarchy in which they appear. All levels can be divided into legal, medical, and technological properties. Standards applied to the first level include regulations or aims to be fulfilled. In legal properties, they have to regulate features of privacy, image documentation, transmission, and presentation; in medical properties, features of disease-image combination, human-diagnostics, automated information extraction, archive retrieval and access; and in technological properties features of image acquisition, display, formats, transfer speed, safety, and system dynamics. The next lower second level has to implement the prescriptions of the upper one, i.e. describe how they are implemented. Legal aspects should demand secure encryption for privacy of all patient related data, image archives that include all images used for diagnostics for a period of 10 years at minimum, accurate annotations of dates and viewing, and precise hardware and software information. Medical aspects should demand standardized patients' files such as DICOM 3 or HL 7 including history and previous examinations, information of image display hardware and software, of image resolution and fields of view, of relation between sizes of biological objects and image sizes, and of access to archives and retrieval. Technological aspects should deal with image acquisition systems (resolution, colour temperature, focus, brightness, and quality evaluation procedures), display resolution data, implemented image formats, storage, cycle frequency, backup procedures, operation system, and external system accessibility. The lowest third level describes the permitted limits and threshold in detail. At present, an applicable standard including all mentioned features does not exist to our knowledge; some aspects can be taken from radiological standards (PACS, DICOM 3); others require specific solutions or are not covered yet.

CONCLUSION

The progress in virtual microscopy and application of artificial intelligence (AI) in tissue-based diagnosis demands fast preparation and implementation of an internationally acceptable standard. The described hierarchic order as well as analytic investigation in all potentially necessary aspects and details offers an appropriate tool to specifically determine standardized requirements.

摘要

背景

自动化图像分析、虚拟显微镜、医院信息系统和跨学科数据交换的进展要求在基于组织的诊断中应用图像标准。

目的

描述在自动化图像分析、虚拟显微镜、医院信息系统和跨学科数据交换等医学领域的理论背景、实践经验和类似解决方案,以促进适用于诊断病理学的图像标准。

理论与经验

基于组织的诊断中使用的图像具有病理学特异性特征。因此,似乎可以根据它们出现的层次结构来讨论它们的特征和潜在的标准化。所有级别都可以分为法律、医疗和技术属性。应用于第一级别的标准包括要遵守的规定或目标。在法律属性中,它们必须规范隐私、图像记录、传输和呈现的特征;在医疗属性中,必须规范疾病-图像组合、人机诊断、自动信息提取、档案检索和访问的特征;在技术属性中,必须规范图像采集、显示、格式、传输速度、安全性和系统动态的特征。下一级别的第二级必须实施上一级别的规定,即描述如何实施它们。法律方面应要求对所有与患者相关的数据进行安全加密,图像档案应至少包含用于诊断的所有图像,至少 10 年内的图像存档,以及日期和查看的准确注释,以及精确的硬件和软件信息。医疗方面应要求标准化患者文件,如 DICOM 3 或 HL 7,包括病史和以前的检查、图像显示硬件和软件信息、图像分辨率和视野、生物对象大小与图像大小之间的关系,以及访问档案和检索。技术方面应涉及图像采集系统(分辨率、色温、焦点、亮度和质量评估程序)、显示分辨率数据、实施的图像格式、存储、循环频率、备份程序、操作系统和外部系统可访问性。最低的第三级详细描述了允许的限制和阈值。目前,据我们所知,还没有一个包含所有提到的特征的适用标准;一些方面可以从放射学标准(PACS、DICOM 3)中获取;其他方面则需要特定的解决方案或尚未涵盖。

结论

虚拟显微镜的进展和人工智能(AI)在基于组织的诊断中的应用要求快速准备和实施一个国际上可接受的标准。所描述的层次结构以及在所有必要的方面和细节进行的分析调查为具体确定标准化要求提供了适当的工具。

相似文献

1
Image standards in tissue-based diagnosis (diagnostic surgical pathology).
Diagn Pathol. 2008 Apr 18;3:17. doi: 10.1186/1746-1596-3-17.
2
Designing fault-tolerant distributed archives for picture archiving and communication systems.
J Digit Imaging. 2001 Jun;14(2 Suppl 1):80-3. doi: 10.1007/BF03190303.
3
AI (artificial intelligence) in histopathology--from image analysis to automated diagnosis.
Folia Histochem Cytobiol. 2009 Jan;47(3):355-61. doi: 10.2478/v10042-009-0087-y.
5
A JAVA-based DICOM server with integration of clinical findings and DICOM-conform data encryption.
Int J Med Inform. 2001 Dec;64(2-3):429-38. doi: 10.1016/s1386-5056(01)00213-1.
7
8
How to measure image quality in tissue-based diagnosis (diagnostic surgical pathology).
Diagn Pathol. 2008 Jul 15;3 Suppl 1(Suppl 1):S11. doi: 10.1186/1746-1596-3-S1-S11.

引用本文的文献

2
Digital Microscopy, Image Analysis, and Virtual Slide Repository.
ILAR J. 2018 Dec 1;59(1):66-79. doi: 10.1093/ilar/ily007.
3
Deep Learning- and Transfer Learning-Based Super Resolution Reconstruction from Single Medical Image.
J Healthc Eng. 2017;2017:5859727. doi: 10.1155/2017/5859727. Epub 2017 Jul 6.
5
Quantitative imaging with a mobile phone microscope.
PLoS One. 2014 May 13;9(5):e96906. doi: 10.1371/journal.pone.0096906. eCollection 2014.
6
The history of pathology informatics: A global perspective.
J Pathol Inform. 2013 May 30;4:7. doi: 10.4103/2153-3539.112689. Print 2013.
9
Nuclear image analysis study of neuroendocrine tumors.
Korean J Pathol. 2012 Feb;46(1):38-41. doi: 10.4132/KoreanJPathol.2012.46.1.38. Epub 2012 Feb 23.
10
Validation of diagnostic accuracy using digital slides in routine histopathology.
Diagn Pathol. 2012 Mar 31;7:35. doi: 10.1186/1746-1596-7-35.

本文引用的文献

2
Validation of novel optical imaging technologies: the pathologists' view.
J Biomed Opt. 2007 Sep-Oct;12(5):051801. doi: 10.1117/1.2795569.
4
Large image microscope array for the compilation of multimodality whole organ image databases.
Anat Rec (Hoboken). 2007 Nov;290(11):1377-87. doi: 10.1002/ar.20600.
5
Image dissemination and archiving.
Clin Tech Small Anim Pract. 2007 Aug;22(3):138-44. doi: 10.1053/j.ctsap.2007.05.008.
7
Digital pathology: DICOM-conform draft, testbed, and first results.
Comput Methods Programs Biomed. 2007 Sep;87(3):181-8. doi: 10.1016/j.cmpb.2007.05.010. Epub 2007 Jul 5.
8
Strategies for efficient virtual microscopy in pathological samples using JPEG2000.
Micron. 2007;38(7):700-13. doi: 10.1016/j.micron.2007.04.008. Epub 2007 May 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验