Department of Chemical Engineering, University of California Santa Barbara, Santa Barbara, California, USA.
J Phys Chem B. 2012 Jul 26;116(29):8383-93. doi: 10.1021/jp2114994. Epub 2012 Feb 22.
Peptide self-assembly plays a role in a number of diseases, in pharmaceutical degradation, and in emerging biomaterials. Here, we aim to develop an accurate molecular-scale picture of this process using a multiscale computational approach. Recently, Shell (Shell, M. S. J. Chem. Phys. 2008, 129, 144108-7) developed a coarse-graining methodology that is based on a thermodynamic quantity called the relative entropy, a measure of how different two molecular ensembles behave. By minimizing the relative entropy between a coarse-grained peptide system and a reference all-atom system, with respect to the coarse-grained model's force field parameters, an optimized coarse-grained model can be obtained. We have reformulated this methodology using a trajectory-reweighting and perturbation strategy that enables complex coarse-grained models with at least hundreds of parameters to be optimized efficiently. This new algorithm allows for complex peptide systems to be coarse-grained into much simpler models that nonetheless recapitulate many correct features of detailed all-atom ones. In particular, we present results for a polyalanine case study, with attention to both individual peptide folding and large-scale fibril assembly.
肽自组装在许多疾病、药物降解和新兴生物材料中都起着重要作用。在这里,我们旨在使用多尺度计算方法来构建该过程的准确分子级图像。最近,Shell(Shell,M. S. J. Chem. Phys. 2008,129,144108-7)开发了一种基于热力学量的粗粒化方法,称为相对熵,它是衡量两个分子系综行为差异的一种度量。通过最小化粗粒化肽系统与参考全原子系统之间的相对熵,同时针对粗粒化模型的力场参数进行优化,可以得到优化的粗粒化模型。我们使用轨迹加权和微扰策略对该方法进行了重新表述,从而可以有效地优化具有至少数百个参数的复杂粗粒化模型。这种新算法可以将复杂的肽系统粗粒化为更简单的模型,但仍能再现详细全原子模型的许多正确特征。特别地,我们将展示聚丙氨酸案例研究的结果,重点关注单个肽折叠和大规模原纤维组装。