Suppr超能文献

利用路径行走在冷冻电镜密度图中进行从头建模。

De Novo modeling in cryo-EM density maps with Pathwalking.

作者信息

Chen Muyuan, Baldwin Philip R, Ludtke Steven J, Baker Matthew L

机构信息

Program in Structural and Computational Biology and Molecular Biophysics, United States; Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, United States.

Department of Psychology, United States; Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, United States.

出版信息

J Struct Biol. 2016 Dec;196(3):289-298. doi: 10.1016/j.jsb.2016.06.004. Epub 2016 Jul 17.

Abstract

As electron cryo-microscopy (cryo-EM) can now frequently achieve near atomic resolution, accurate interpretation of these density maps in terms of atomistic detail has become paramount in deciphering macromolecular structure and function. However, there are few software tools for modeling protein structure from cryo-EM density maps in this resolution range. Here, we present an extension of our original Pathwalking protocol, which can automatically trace a protein backbone directly from a near-atomic resolution (3-6Å) density map. The original Pathwalking approach utilized a Traveling Salesman Problem solver for backbone tracing, but manual adjustment was still required during modeling. In the new version, human intervention is minimized and we provide a more robust approach for backbone modeling. This includes iterative secondary structure identification, termini detection and the ability to model multiple subunits without prior segmentation. Overall, the new Pathwalking procedure provides a more complete and robust tool for annotating protein structure function in near-atomic resolution density maps.

摘要

由于电子冷冻显微镜(cryo-EM)现在常常能够达到近原子分辨率,从原子细节层面准确解读这些密度图对于解析大分子结构和功能变得至关重要。然而,在这个分辨率范围内,用于从冷冻电镜密度图建模蛋白质结构的软件工具很少。在这里,我们展示了我们原始的路径追踪协议的扩展,它可以直接从近原子分辨率(3 - 6Å)密度图自动追踪蛋白质主链。原始的路径追踪方法利用旅行商问题求解器进行主链追踪,但在建模过程中仍需要人工调整。在新版本中,人工干预被最小化,并且我们为主链建模提供了一种更稳健的方法。这包括迭代二级结构识别、末端检测以及无需预先分割即可对多个亚基进行建模的能力。总体而言,新的路径追踪程序为在近原子分辨率密度图中注释蛋白质结构功能提供了一个更完整、更稳健的工具。

相似文献

1
De Novo modeling in cryo-EM density maps with Pathwalking.利用路径行走在冷冻电镜密度图中进行从头建模。
J Struct Biol. 2016 Dec;196(3):289-298. doi: 10.1016/j.jsb.2016.06.004. Epub 2016 Jul 17.
6
Cryo-EM of macromolecular assemblies at near-atomic resolution.近原子分辨率的大分子组装体的冷冻电镜。
Nat Protoc. 2010 Sep;5(10):1697-708. doi: 10.1038/nprot.2010.126. Epub 2010 Sep 30.
9
Refinement of Atomic Structures Against cryo-EM Maps.基于冷冻电镜图谱对原子结构的优化
Methods Enzymol. 2016;579:277-305. doi: 10.1016/bs.mie.2016.05.033. Epub 2016 Jun 24.
10
Modeling protein structure at near atomic resolutions with Gorgon.用 Gorgon 实现近原子分辨率的蛋白质结构建模。
J Struct Biol. 2011 May;174(2):360-73. doi: 10.1016/j.jsb.2011.01.015. Epub 2011 Feb 4.

引用本文的文献

本文引用的文献

9
Structure-based characterization of multiprotein complexes.基于结构的多蛋白复合物表征
Structure. 2014 Jul 8;22(7):1063-70. doi: 10.1016/j.str.2014.05.005. Epub 2014 Jun 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验