Akabane Takafumi, Tanaka Kohichiro, Irie Megumi, Terashita Shigeyuki, Teramura Toshio
Analysis & Pharmacokinetics Research Labs, Discovery Drug Metabolism & Pharmacokinetics, Astellas Pharma Inc., 21 Miyukigaoka, Tsukuba City, Ibaraki, Japan.
Xenobiotica. 2011 May;41(5):372-84. doi: 10.3109/00498254.2010.549970. Epub 2011 Mar 9.
We describe the preclinical and clinical pharmacokinetic profiles of FK3453 [6-(2-amino-4-phenylpyrimidin-5-yl)-2-isopropylpyridazin-3(2H)-one] and the mechanism responsible for poor oral exposure of FK3453 in humans. FK3453 showed favourable profiles in preclinical pharmacokinetic studies, including satisfactory absolute bioavailability and total body clearance in animals (30.5%-41.4%, 54.7%-68.2%, and 71.3%-93.4% and 10.8-17.6, 1.9-17.1, and 5.0 mL/min/kg in male rats, female rats, and dogs, respectively), and good metabolic stability in liver microsomes (42.3, 14.5, and 1.1 mL/min/kg in male rats, dogs, and humans, respectively). However, despite these promising preclinical findings, plasma concentrations of FK3453 in humans were extremely low, with the oxidative metabolite of the aminopyrimidine moiety (M4) identified as a major metabolite. Given that aldehyde oxidase (AO) and xanthine oxidase (XO) were presumed to be the enzymes responsible for M4 formation, we investigated the mechanism of M4 formation using human liver subcellular fractions. M4 was detected in the incubation mixture with S9 and cytosol but not with microsomes, and M4 formation was inhibited by AO inhibitors (menadione, isovanillin) but not by cytochrome P-450 inhibitor (1-aminobenzotiazole) or XO inhibitor (allopurinol). These results suggest M4 formation is catalyzed by AO, and therefore, its poor exposure in humans was attributed to extensive AO metabolism.
我们描述了FK3453[6-(2-氨基-4-苯基嘧啶-5-基)-2-异丙基哒嗪-3(2H)-酮]的临床前和临床药代动力学特征,以及FK3453在人体内口服暴露不佳的原因。FK3453在临床前药代动力学研究中表现出良好的特征,包括在动物体内令人满意的绝对生物利用度和总体清除率(雄性大鼠、雌性大鼠和犬分别为30.5%-41.4%、54.7%-68.2%和71.3%-93.4%,以及10.8-17.6、1.9-17.1和5.0 mL/min/kg),并且在肝微粒体中具有良好的代谢稳定性(雄性大鼠、犬和人分别为42.3、14.5和1.1 mL/min/kg)。然而,尽管有这些令人鼓舞的临床前研究结果,但FK3453在人体内的血浆浓度极低,氨基嘧啶部分的氧化代谢物(M4)被确定为主要代谢物。鉴于醛氧化酶(AO)和黄嘌呤氧化酶(XO)被认为是负责形成M4的酶,我们使用人肝亚细胞组分研究了M4的形成机制。在含有S9和胞质溶胶的孵育混合物中检测到了M4,但在微粒体中未检测到,并且AO抑制剂(甲萘醌、异香草醛)可抑制M4的形成,而细胞色素P-450抑制剂(1-氨基苯并噻唑)或XO抑制剂(别嘌呤醇)则不能。这些结果表明M4的形成是由AO催化的,因此,其在人体内暴露不佳归因于广泛的AO代谢。