Suppr超能文献

预测小分子在肝细胞溶质中的稳定性。

Predicting liver cytosol stability of small molecules.

作者信息

Shah Pranav, Siramshetty Vishal B, Zakharov Alexey V, Southall Noel T, Xu Xin, Nguyen Dac-Trung

机构信息

National Center for Advancing Translational Sciences (NCATS), National Institutes of Health (NIH), 9800 Medical Center Drive, Rockville, MD, 20850, USA.

出版信息

J Cheminform. 2020 Apr 7;12(1):21. doi: 10.1186/s13321-020-00426-7.

Abstract

Over the last few decades, chemists have become skilled at designing compounds that avoid cytochrome P (CYP) 450 mediated metabolism. Typical screening assays are performed in liver microsomal fractions and it is possible to overlook the contribution of cytosolic enzymes until much later in the drug discovery process. Few data exist on cytosolic enzyme-mediated metabolism and no reliable tools are available to chemists to help design away from such liabilities. In this study, we screened 1450 compounds for liver cytosol-mediated metabolic stability and extracted transformation rules that might help medicinal chemists in optimizing compounds with these liabilities. In vitro half-life data were collected by performing in-house experiments in mouse (CD-1 male) and human (mixed gender) cytosol fractions. Matched molecular pairs analysis was performed in conjunction with qualitative-structure activity relationship modeling to identify chemical structure transformations affecting cytosolic stability. The transformation rules were prospectively validated on the test set. In addition, selected rules were validated on a diverse chemical library and the resulting pairs were experimentally tested to confirm whether the identified transformations could be generalized. The validation results, comprising nearly 250 library compounds and corresponding half-life data, are made publicly available. The datasets were also used to generate in silico classification models, based on different molecular descriptors and machine learning methods, to predict cytosol-mediated liabilities. To the best of our knowledge, this is the first systematic in silico effort to address cytosolic enzyme-mediated liabilities.

摘要

在过去几十年中,化学家们已经熟练掌握了设计避免细胞色素P(CYP)450介导代谢的化合物的方法。典型的筛选试验是在肝微粒体组分中进行的,直到药物发现过程的后期才有可能忽略胞质酶的作用。关于胞质酶介导的代谢的数据很少,并且没有可靠的工具可供化学家用来帮助设计避免此类不利因素的化合物。在本研究中,我们筛选了1450种化合物的肝细胞溶质介导的代谢稳定性,并提取了可能有助于药物化学家优化具有这些不利因素的化合物的转化规则。通过在小鼠(CD-1雄性)和人(混合性别)胞质溶质组分中进行内部实验来收集体外半衰期数据。结合定性结构活性关系建模进行匹配分子对分析,以识别影响胞质稳定性的化学结构转化。在测试集上对转化规则进行前瞻性验证。此外,在一个多样化的化学文库上对选定的规则进行验证,并对得到的分子对进行实验测试,以确认所识别的转化是否可以推广。包含近250种文库化合物和相应半衰期数据的验证结果已公开。这些数据集还用于基于不同的分子描述符和机器学习方法生成计算机分类模型,以预测胞质溶质介导的不利因素。据我们所知,这是首次针对胞质酶介导的不利因素进行的系统性计算机研究。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dd1e/7140498/35e1940421a1/13321_2020_426_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验