Mazucheli Josmar, Barros Emílio Augusto Coelho, Achcar Jorge Alberto
Universidade Estadual de Maringá, Departamento de Estatística, DEs/UEM, Maringá, PR, Brazil.
Comput Methods Programs Biomed. 2005 Jul;79(1):39-47. doi: 10.1016/j.cmpb.2005.02.008.
In many applications of lifetime data analysis, it is important to perform inferences about the mode of the hazard function in situations of lifetime data modeling with unimodal hazard functions. For lifetime distributions where the mode of the hazard function can be analytically calculated, its maximum likelihood estimator is easily obtained from the invariance properties of the maximum likelihood estimators. From the asymptotical normality of the maximum likelihood estimators, confidence intervals can be obtained. However, these results might not be very accurate for small sample sizes and/or large proportion of censored observations. Considering the log-logistic distribution for the lifetime data with shape parameter beta>1, we present and compare the accuracy of asymptotical confidence intervals with two confidence intervals based on bootstrap simulation. The alternative methodology of confidence intervals for the mode of the log-logistic hazard function are illustrated in three numerical examples.
在寿命数据分析的许多应用中,在具有单峰危险函数的寿命数据建模情况下,对危险函数的众数进行推断非常重要。对于危险函数的众数可以通过解析计算得出的寿命分布,其最大似然估计量可根据最大似然估计量的不变性性质轻松获得。根据最大似然估计量的渐近正态性,可以得到置信区间。然而,对于小样本量和/或大量删失观测值的情况,这些结果可能不是非常准确。考虑形状参数β>1的寿命数据的对数-逻辑斯蒂分布,我们给出并比较了渐近置信区间与基于自助模拟的两个置信区间的准确性。在三个数值例子中说明了对数-逻辑斯蒂危险函数众数的置信区间的替代方法。